Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity, which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104469 | PMC |
http://dx.doi.org/10.3389/fonc.2014.00188 | DOI Listing |
Biomark Res
January 2025
Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.
Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.
EMBO Mol Med
January 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
Oncolytic viruses (OV) expressing bispecific T-cell engagers (BiTEs) are promising tools for tumor immunotherapy but the range of target tumors is limited. To facilitate effective T-cell stimulation with broad-range applicability, we established membrane-associated T-cell engagers (MATEs) harboring the protein transduction domain of the HIV-Tat protein to achieve non-selective binding to target cells. In vitro, MATEs effectively activated murine T cells and improved killing of MC38 colon carcinoma cells.
View Article and Find Full Text PDFClin Cancer Res
January 2025
University of Leeds, Leeds, United Kingdom.
Background: Effective treatment for patients with metastatic cancer is limited, particularly for colorectal cancer patients with metastatic liver lesions (mCRC), where accessibility to numerous tumours is essential for favourable clinical outcomes. Oncolytic viruses (OVs) selectively replicate in cancer cells; however, direct targeting of inaccessible lesions is limited when using conventional intravenous or intratumoural administration routes.
Methods: We conducted a multi-centre, dose-escalation, phase I study of vaccinia virus, TG6002, via intrahepatic artery (IHA) delivery in combination with the oral pro-drug 5-fluorocytosine to fifteen mCRC patients.
J Cancer
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells.
View Article and Find Full Text PDFViruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!