In order to enable communication through a brain-computer interface (BCI), it is necessary to discriminate between distinct brain responses. As a first step, we probed the possibility to discriminate between affirmative ("yes") and negative ("no") responses using a semantic classical conditioning paradigm, within an fMRI setting. Subjects were presented with congruent and incongruent word-pairs as conditioned stimuli (CS), respectively eliciting affirmative and negative responses. Incongruent word-pairs were associated to an unpleasant unconditioned stimulus (scream, US1) and congruent word-pairs were associated to a pleasant unconditioned stimulus (baby-laughter, US2), in order to elicit emotional conditioned responses (CR). The aim was to discriminate between affirmative and negative responses, enabled by their association with the positive and negative affective stimuli. In the late acquisition phase, when the US were not present anymore, there was a strong significant differential activation for incongruent and congruent word-pairs in a cluster comprising the left insula and the inferior frontal triangularis. This association was not found in the habituation phase. These results suggest that the difference in affirmative and negative brain responses was established as an effect of conditioning, allowing to further investigate the possibility of using this paradigm for a binary choice BCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104703PMC
http://dx.doi.org/10.3389/fnbeh.2014.00247DOI Listing

Publication Analysis

Top Keywords

brain responses
12
affirmative negative
12
insula inferior
8
inferior frontal
8
frontal triangularis
8
discriminate affirmative
8
incongruent word-pairs
8
negative responses
8
word-pairs associated
8
unconditioned stimulus
8

Similar Publications

Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined.

View Article and Find Full Text PDF

The role of conscious attention in auditory statistical learning: Evidence from patients with impaired consciousness.

iScience

January 2025

Cognitive Neuroimaging Unit U992, CNRS, INSERM, CEA, DRF/Institut Joliot, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.

The need for attention to enable statistical learning is debated. Testing individuals with impaired consciousness offers valuable insight, but very few studies have been conducted due to the difficulties inherent in such studies. Here, we examined the ability of patients with varying levels of disorders of consciousness (DOC) to extract statistical regularities from an artificial language composed of randomly concatenated pseudowords by measuring frequency tagging in EEG.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.

View Article and Find Full Text PDF

Objective: This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.

Methods: Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!