The sequencing of libraries containing molecules shorter than the read length, such as in ancient or forensic applications, may result in the production of reads that include the adaptor, and in paired reads that overlap one another. Challenges for the processing of such reads are the accurate identification of the adaptor sequence and accurate reconstruction of the original sequence most likely to have given rise to the observed read(s). We introduce an algorithm that removes the adaptors and reconstructs the original DNA sequences using a Bayesian maximum a posteriori probability approach. Our algorithm is faster, and provides a more accurate reconstruction of the original sequence for both simulated and ancient DNA data sets, than other approaches. leeHom is released under the GPLv3 and is freely available from: https://bioinf.eva.mpg.de/leehom/
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191382 | PMC |
http://dx.doi.org/10.1093/nar/gku699 | DOI Listing |
J Environ Manage
January 2025
School of Management, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
Accurately predicting carbon prices is crucial for effective government decision-making and maintenance the stable operation of carbon markets. However, the instability and nonlinearity of carbon prices, driven by the complex interaction between economic, environmental, and political factors, often result in inaccurate predictions. To confront this challenge, this paper proposed a carbon price prediction model that integrates dual decomposition integration and error correction.
View Article and Find Full Text PDFJ Dent
January 2025
Department of Reconstructive Dentistry and Gerodontology, University of Bern, Bern, Switzerland; Department of Conservative Dentistry and Orofacial Prosthodontics, Complutense University of Madrid, Madrid, Spain; Complutense University of Madrid, Ramon y Cajal Research Institute (IRYCIS). Madrid, Spain. Electronic address:
Objectives: To in-vitro evaluate the feasibility and accuracy (trueness and precision) of various intraoral scanners (IOS) to digitize maxillectomy defect models with exposed zygomatic implants in situ.
Material And Methods: Six partially edentulous and edentulous maxillectomy defect models with 2 zygomatic implants each were obtained. References scans were obatined by using a laboratory scanner (inEos X5; Dentsply Sirona).
Arch Orthop Trauma Surg
January 2025
Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.
Iliosacral screw osteosynthesis is a widely recognized technique for stabilizing unstable posterior pelvic ring injuries, offering notable advantages, including enhanced mechanical stability, minimal invasiveness, reduced blood loss, and lower infection rates. However, the procedure presents technical challenges due to the complex anatomy of the sacrum and the proximity of critical neurovascular structures. While conventional fluoroscopy remains the primary method for intraoperative guidance, precise preoperative planning using multiplanar reconstructions and three-dimensional volume rendering is crucial for ensuring accurate placement of iliosacral or transsacral screws.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milano, Italy.
In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China.
Ground-Penetrating Radar (GPR) has demonstrated significant advantages in the non-destructive detection of road structural defects due to its speed, safety, and efficiency. This paper proposes a three-dimensional (3D) reconstruction method for GPR images, integrating the back-projection (BP) imaging algorithm to accurately determine the size, location, and other parameters of road structural defects. Initially, GPR detection images were preprocessed, including direct wave removal and wavelet denoising, followed by the application of the BP algorithm to effectively restore the defect's location and size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!