NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhu171 | DOI Listing |
J Neurosci Methods
January 2025
National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon 22332, Republic of Korea. Electronic address:
Background: The recovery of injured peripheral nerves relies on angiogenesis, where newly formed blood vessels act as pathways guiding Schwann cells across the wound to support axon regeneration. While some research has examined this process, the specific mechanisms of angiogenesis in peripheral nerve healing remain unclear. In vitro models are vital tools to investigate these mechanisms; however, no current in vitro culture methods exist for isolating vascular cells, such as endothelial cells (ECs) and pericytes, specifically from sciatic nerves.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Research Group on Tumors of the Central Nervous System, Pathology Department, University of Valencia, 46010 Valencia, Spain.
Glioblastoma IDH wild type (GB), the most common malignant primary brain tumor, is characterized by rapid proliferation, extensive infiltration into surrounding brain tissue, and significant resistance to current therapies. Median survival is only 15 months despite extensive clinical efforts. The tumor microenvironment (TME) in GB is highly specialized, supporting the tumor's aggressive behavior and its ability to evade conventional treatments.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Vascular regeneration plays a vital role in tissue repair yet is drastically impaired in those with a spinal cord injury (SCI). Pericytes are of great significance as they are entwined with vessel-specific endothelial cells and actively contribute to maintaining the spinal cord's vascular network. Within the neurovascular unit (NVU), subtypes of pericytes characterized by various markers such as PDGFR-β, Desmin, CD146, and NG-2 are involved in vascular regeneration in SCI repair.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
Background: Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!