Psychostimulant effects of cocaine are mediated partly by agonist actions at sigma-1 (σ1) receptors. Selective σ1 receptor antagonists attenuate these effects and provide a potential avenue for pharmacotherapy. However, the selective and high affinity σ1 antagonist PD144418 (1,2,3,6-tetrahydro-5-[3-(4-methylphenyl)-5-isoxazolyl]-1-propylpyridine) has been reported not to inhibit cocaine-induced hyperactivity. To address this apparent paradox, we evaluated aspects of PD144418 binding in vitro, investigated σ1 receptor and dopamine transporter (DAT) occupancy in vivo, and re-examined effects on locomotor activity. PD144418 displayed high affinity for σ1 sites (Ki 0.46 nM) and 3596-fold selectivity over σ2 sites (Ki 1654 nM) in guinea pig brain membranes. No appreciable affinity was noted for serotonin and norepinephrine transporters (Ki >100 μM), and the DAT interaction was weak (Ki 9.0 μM). In vivo, PD144418 bound to central and peripheral σ1 sites in mouse, with an ED50 of 0.22 μmol/kg in whole brain. No DAT occupancy by PD144418 (10.0 μmol/kg) or possible metabolites were observed. At doses that did not affect basal locomotor activity, PD144418 (1, 3.16, and 10 μmol/kg) attenuated cocaine-induced hyperactivity in a dose-dependent manner in mice. There was good correlation (r(2) = 0.88) of hyperactivity reduction with increasing cerebral σ1 receptor occupancy. The behavioral ED50 of 0.79 μmol/kg corresponded to 80% occupancy. Significant σ1 receptor occupancy and the ability to mitigate cocaine's motor stimulatory effects were observed for 16 hours after a single 10.0 μmol/kg dose of PD144418.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165029 | PMC |
http://dx.doi.org/10.1124/jpet.114.216671 | DOI Listing |
Br J Pharmacol
February 2025
Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada.
Front Cell Infect Microbiol
August 2024
Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany.
Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear.
Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2.
Mar Biotechnol (NY)
August 2024
Department of Animal Sciences, Washington State University, Pullman, WA, USA.
Activin signaling is essential for proper embryonic, skeletal muscle, and reproductive development. Duplication of the pathway in teleost fish has enabled diversification of gene function across the pathway but how gene duplication influences the function of activin signaling in non-mammalian species is poorly understood. Full characterization of activin receptor signaling pathway expression was performed across embryonic development and during early skeletal muscle growth in rainbow trout (RBT, Oncorhynchus mykiss).
View Article and Find Full Text PDFBMC Cancer
July 2024
Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
Purpose: Extracellular heat shock protein 90 AA1(eHSP90α) is intricately linked to tumor progression and prognosis. This study aimed to investigate the difference in the value of eHSP90α in post-treatment response assessment and prognosis prediction between exon 19 deletion(19DEL) and exon 21 Leu858Arg(L858R) mutation types in lung adenocarcinoma(LUAD).
Methods: We analyzed the relationship between the expression of eHSP90α and clinicopathological features in 89 patients with L858R mutation and 196 patients with 19DEL mutation in LUAD.
Biology (Basel)
May 2024
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Traditional treatments of cancer have faced various challenges, including toxicity, medication resistance, and financial burdens. On the other hand, bioactive phytochemicals employed in complementary alternative medicine have recently gained interest due to their ability to control a wide range of molecular pathways while being less harmful. As a result, we used a network pharmacology approach to study the possible regulatory mechanisms of active constituents of for the treatment of liver cancer (LC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!