Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species.

Biol Reprod

Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France

Published: October 2014

Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are TGFbeta-like oocyte-derived growth factors involved in ovarian folliculogenesis as critical regulators of many granulosa cell processes and ovulation rate. Ovarian phenotypic effect caused by alterations in BMP15 and GDF9 genes appears to differ between species and may be relevant to their mono- or polyovulating status. Through phylogenetic analysis we recently showed that these two paralogous genes are strongly divergent and in rapid evolution as compared to other members of the TGFbeta superfamily. Here, we evaluate the amino acid substitution rates of a set of proteins implicated in the ovarian function, including BMP15 and GDF9, with special attention to the mono- or polyovulating status of the species. Among a panel of mono- and polyovulating mammals, we demonstrate a better conservation of some areas in BMP15 and GDF9 within mono-ovulating species. Homology modeling of BMP15 and GDF9 homodimer and heterodimer 3-D structures was suggestive that these areas may be involved in dimer formation and stability. A phylogenetic study of BMP15/GDF9-related proteins reveals that these two genes diverged from the same ancestral gene along with BMP3 and GDF10, two other paralogous genes. A substitution rate analysis based on this phylogenetic tree leads to the hypothesis of an acquisition of BMP15/GDF9-specific functions in ovarian folliculogenesis in mammals. We propose that high variations observed in specific areas of BMP15 and GDF9 in polyovulating species change the equilibrium between homodimers and heterodimers, modifying the biological activity and thus allowing polyovulation to occur.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.114.119735DOI Listing

Publication Analysis

Top Keywords

bmp15 gdf9
20
mono- polyovulating
16
bone morphogenetic
8
morphogenetic protein
8
growth differentiation
8
differentiation factor
8
polyovulating species
8
ovarian folliculogenesis
8
polyovulating status
8
paralogous genes
8

Similar Publications

Treatment with follicle-stimulating hormone (FSH) and testosterone (T2) and their combination have been observed to be influential on ovarian follicles of 1-day-old mice ovaries cultured for 8 days. Given that extension of the culture period could positively impact the development of follicles in cultured ovaries, the present study was conducted to evaluate the main and interaction effects of FSH by T2 on the development of ovarian follicles in 1-day-old mice ovaries cultured for 12 days. One-day-old mice ovaries were initially cultured with base medium for 4 days; thereafter, different hormonal treatments were added to the culture media, and the culture was continued for 8 additional days until day 12.

View Article and Find Full Text PDF

Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.

View Article and Find Full Text PDF

The study was conducted on indigenous Tharparkar cow () to evaluate FSH stimulation on follicular attributes, oocyte recovery and morpho-molecular developmental competence parameters concerning oocyte quality. A total of 20 OPU sessions were performed, which included 10 sessions in each FSH stimulated at the dose of 130 µg divided into four sub-doses and non-stimulated. Findings on the size of follicles having ≥6 mm showed a significantly higher, however an opposite trend was observed in the case of smaller sized follicle (<6 mm) between stimulated and non-stimulated respectively.

View Article and Find Full Text PDF

Effects of combination of melatonin and L-carnitine on in vitro maturation in mouse oocytes: An experimental study.

Int J Reprod Biomed

July 2024

Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.

Article Synopsis
  • Melatonin and L-carnitine are antioxidants that help improve the development of oocytes (egg cells) in a study using female mice.
  • The research tested the effects of these antioxidants by injecting mice with a hormone and then treating the extracted oocytes with either melatonin, L-carnitine, both, or a control solution.
  • Results showed that the combination treatment significantly increased oocyte size, maturation rates, and gene expression related to development, while reducing cell death compared to the other groups.
View Article and Find Full Text PDF

Lactating oocytes consume a lot of energy during maturation, a large part of which comes from lipid metabolism. PPARγ is a key regulator of lipid metabolism. In this study, rosiglitazone (RSG), an activator of PPARγ, was added to a mature medium to investigate its effects on the levels of spindle and the chromosome arrangement, lipid deposition, reactive oxygen species (ROS), and glutathione (GSH) levels, oocyte secretion factors, apoptosis and lipid metabolism-related gene expression, and subsequent embryonic development during the maturation of sheep oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!