N,N'-Dihexyl-6,6'-dicyanoisoindigo, N,N'-didecyl-5,5',6,6'-tetracyanoisoindigo, N,N'-dihexyl-5,5',6,6'-tetracyanoisoindigo, and N,N'-dihexyl-5,5',6,6'-tetracyanothienoisoindigo have been synthesised in moderate yields by the reaction of corresponding di and tetrabromo species with CuCN, with microwave heating leading to higher yields and fewer side products for the tetrasubstituted species. Di- and tetracyano substitution anodically shifts the molecular reduction potential relative to the unsubstituted cores by ca. 0.4 and 0.8 V, respectively, with the resultant values for the tetracyano derivatives (-0.58 to -0.67 V vs. FeCp2(+/0)) suggesting the possibility of air-stable electron transport. All the synthesised cyano derivatives operate in n-channel OFETs, while the tetrabromothienoisoindigo derivative functions in a p-channel transistor. The tetracyanothienoisoindigo derivative exhibits the highest field-effect electron mobility values - up to 0.04 and 0.09 cm(2) V(-1) s(-1) in spin-coated and inkjet-printed devices respectively - and OFETs incorporating this compound have been shown to operate in air without significant degradation of their mobility values in the saturation regime.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp02427cDOI Listing

Publication Analysis

Top Keywords

mobility values
8
tetracyano isoindigo
4
isoindigo small
4
small molecules
4
molecules n-channel
4
n-channel organic
4
organic field-effect
4
field-effect transistors
4
transistors nn'-dihexyl-66'-dicyanoisoindigo
4
nn'-dihexyl-66'-dicyanoisoindigo nn'-didecyl-55'66'-tetracyanoisoindigo
4

Similar Publications

Even if rarely detected, right atrial (RA) masses represent a diagnostic challenge due to their heterogeneous presentation. Para-physiological RA structures, such as a prominent Eustachian valve, Chiari's network, and lipomatous atrial hypertrophy, may easily be misinterpreted as pathological RA masses, including thrombi, myxomas, and vegetations. Each pathological mass should always be correlated with adequate clinical, anamnestic, and laboratory data.

View Article and Find Full Text PDF

Validity and Reliability of Kinovea for Pelvic Kinematic Measurement in Standing Position and in Sitting Position with 45° of Hip Flexion.

Sensors (Basel)

January 2025

Unidad de Investigación en Fisioterapia, Spin off Centro Clínico OMT-E Fisioterapia SLP, Universidad de Zaragoza, Domingo Miral s/n, 50009 Zaragoza, Spain.

The anatomy of the pelvis may obscure differences in pelvic tilt, potentially underestimating its correlation with clinical measures. Measuring the total sagittal range of pelvic movement can serve as a reliable indicator of pelvic function. This study assessed the inter- and intra-examiner reliability of the Kinovea version 0.

View Article and Find Full Text PDF

Chicken with prepared via pressure cooking is a traditional Chinese delicacy with great potential for food development. Optimizing its cooking time is crucial. In this study, chicken and were pressure-cooked for different amounts of time (20 min, 25 min, 30 min, 35 min, and 40 min).

View Article and Find Full Text PDF

Polydopamine Coated Nonspherical Magnetic Nanocluster for Synergistic Dual Magneto-Photothermal Cancer Therapy.

Polymers (Basel)

December 2024

NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain.

Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed.

View Article and Find Full Text PDF

Background: Physical activity (PA) may have an impact on cognitive function. Machine learning (ML) techniques are increasingly used in dementia research, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!