Developmental toxicity, EROD, and CYP1A mRNA expression in zebrafish embryos exposed to dioxin-like PCB126.

Environ Toxicol

Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand.

Published: February 2016

Dioxin-like PCB126 is a persistent organic pollutant that causes a range of syndromes including developmental toxicity. Dioxins have a high affinity for aryl hydrocarbon receptor (AhR) and induce cytochrome P4501A (CYP1A). However, the role of CYP1A activity in developmental toxicity is less clear. To better understand dioxin induced developmental toxicity, we exposed zebrafish (Danio rerio) embryos to PCB126 at concentrations of 0, 16, 32, 64, and 128 μg L(-1) from 3-h post-fertilization (hpf) to 168 hpf. The embryonic survival rate decreased at 144 and 168 hpf. The fry at 96 hpf displayed gross developmental malformations, including pericardial and yolk sac edema, spinal curvature, abnormal lower jaw growth, and non-inflated swim bladder. The pericardial and yolk sac edema rate significantly increased and the heart rate declined from 96 hpf compared with the controls. PCB126 did not alter the hatching rate. To elucidate the mechanism of PCB126-induced developmental toxicity, we conducted ethoxyresorufin-O-deethylase (EROD) in vivo assay to determine CYP1A enzyme activity, and real-time PCR to study the induction of CYP1A mRNA gene expression in embryo/larval zebrafish at 24, 72, 96, and 132 hpf. In vivo EROD activity was induced by PCB126 at 16 μg L(-1) concentration as early as 72 hpf but significant increases were observed only in zebrafish exposed to 64 and 128 μg L(-1) doses (p < 0.005) at 72, 96, and 132 hpf. Induction of CYP1A mRNA expression was significantly upregulated in zebrafish exposed to 32 and 64 μg L(-1) at 24, 72, 96, and 132 hpf. Overall, the severe pericardial and yolk sac edema and reduced heart rate suggest that heart defects are a sensitive endpoint, and the general trend of dose-dependent increase in EROD activity and induction of CYP1A mRNA gene expression provide evidence that the developmental toxicity of PCB126 to zebrafish embryos is mediated by activation of AhR.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.22035DOI Listing

Publication Analysis

Top Keywords

developmental toxicity
20
μg l-1
12
cyp1a mrna
8
dioxin-like pcb126
8
128 μg
8
168 hpf
8
pericardial yolk
8
yolk sac
8
sac edema
8
hpf
7

Similar Publications

This study is aimed at evaluating the neurotoxic effects of chronic exposure of sodium fluoride (NaF) in developmental stages in rat using prenatal models. NaF (100 ppm, orally) dosing via drinking water was given to pregnant rats in disease group. In the treatment groups, Metformin & Dehydrozingerone (DHZ) (200 mg/kg) were administered orally along with NaF, and the dosing was continued throughout the gestation and lactation periods to the pups until the end of experiment.

View Article and Find Full Text PDF

Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.

View Article and Find Full Text PDF

Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation.

Water Res

January 2025

Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!