Towards the identification of new physics through quark flavour violating processes.

Rep Prog Phys

TUM-IAS, Lichtenbergstr. 2a, D-85748 Garching, Germany Physik Department, TUM, D-85748 Garching, Germany.

Published: August 2014

We outline a systematic strategy that should help in this decade to identify new physics (NP) beyond the standard model (SM) by means of quark flavour violating processes, and thereby extend the picture of short distance physics down to scales as short as 10(-20) m and even shorter distance scales corresponding to energies of 100 TeV. Rather than using all of the possible flavour-violating observables that will be measured in the coming years at the LHC, SuperKEKB and in Kaon physics dedicated experiments at CERN, J-PARC and Fermilab, we concentrate on those observables that are theoretically clean and very sensitive to NP. Assuming that the data on the selected observables will be very precise, we stress the importance of correlations between these observables as well as of future precise calculations of non-perturbative parameters by means of lattice QCD simulations with dynamical fermions. Our strategy consists of twelve steps, which we will discuss in detail while illustrating the possible outcomes with the help of the SM, models with constrained minimal flavour violation (CMFV), MFV at large and models with tree-level flavour changing neutral currents mediated by neutral gauge bosons and scalars. We will also briefly summarize the status of a number of concrete models. We propose DNA charts that exhibit correlations between flavour observables in different NP scenarios. Models with new left-handed and/or right-handed currents and non-MFV interactions can be distinguished transparently in this manner. We emphasize the important role of the stringent CMFV relations between various observables as standard candles of flavour physics. The pattern of deviations from these relations may help in identifying the correct NP scenario. The success of this program will be very much facilitated through direct signals of NP at the LHC, even if the LHC will not be able to probe the physics at scales shorter than 4 × 10(-20) m. We also emphasize the importance of lepton flavour violation, electric dipole moments, and (g - 2)e, μ in these studies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0034-4885/77/8/086201DOI Listing

Publication Analysis

Top Keywords

quark flavour
8
flavour violating
8
violating processes
8
physics scales
8
observables will
8
flavour violation
8
flavour
7
observables
6
will
6
physics
5

Similar Publications

Article Synopsis
  • Measuring deeply virtual Compton scattering (DVCS) on the neutron is essential for understanding the nucleon's structure through generalized parton distributions (GPDs).
  • Neutron targets help complement data obtained from polarized protons, particularly in determining the poorly understood GPD E, which is crucial for analyzing quark contributions to nucleon spin.
  • The experiment utilized a longitudinally polarized electron beam at Jefferson Lab and the CLAS12 detector to measure DVCS on the neutron for the first time, providing new insights into quark-flavor separation of relevant Compton form factors.
View Article and Find Full Text PDF

Semi-inclusive hadron production in longitudinally polarized deep-inelastic lepton-nucleon scattering is a powerful tool for resolving the quark flavor decomposition of the proton's spin structure. We present the full next-to-next-to-leading order QCD corrections to the coefficient functions of polarized semi-inclusive deep-inelastic scattering (SIDIS) in analytical form, enabling the use of SIDIS measurements in precision studies of the proton spin structure. The numerical impact of these corrections is illustrated by a comparison with data of polarized single-inclusive hadron spectra from the DESY HERMES and CERN COMPASS experiments.

View Article and Find Full Text PDF

Time-Like heavy-flavour thresholds for fragmentation functions: the light-quark matching condition at NNLO.

Eur Phys J C Part Fields

November 2024

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Unlabelled: Matching conditions are universal ingredients that describe how fragmentation functions change when heavy-flavour thresholds are crossed during the factorisation scale evolution. They are the last missing piece for a consistent description of observables with identified final-state hadrons at next-to-next-to leading order accuracy in quantum chromodynamics. We present an analytical form of the matching condition for light-flavour to hadron fragmentation function at next-to-next-to leading order.

View Article and Find Full Text PDF

Secondary vertex reconstruction with MaskFormers.

Eur Phys J C Part Fields

October 2024

Centre for Data Intensive Science and Industry, University College London, London, UK.

In high-energy particle collisions, the reconstruction of secondary vertices from heavy-flavour hadron decays is crucial for identifying and studying jets initiated by - or -quarks. Traditional methods, while effective, require extensive manual optimisation and struggle to perform consistently across wide regions of phase space. Meanwhile, recent advancements in machine learning have improved performance but are unable to fully reconstruct multiple vertices.

View Article and Find Full Text PDF

The first hyperon was discovered about 70 years ago, but the nature of these particles, particularly with regard to multistrange hyperons, and many of their properties can still be considered to be literally strange. A dedicated and successful global spectroscopy program in the 1960s and 1970s usingK-beams revealed many multistrange candidates, but the available evidence of their existence is statistically limited. For this reason, there is still much to learn about the systematics of the spectrum of excited hyperon states and what they have in common with their non-strange companions, or how they differ from the nucleon and Δ resonances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!