Background: Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment.
Objective: The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation.
Methods: We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view.
Results: We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation estimation methods demonstrated the adaptivity and robustness to changes in the smartphone attachment position, when the fusion of both vision and inertial information was used.
Conclusions: The system achieves satisfactory accuracy on indoor position tracking for the use in the FoG detection application with spatial context. The combination of inertial and vision information has the potential for correct patient heading estimation even when the inertial wearable sensor device is put into an a priori unknown position.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114461 | PMC |
http://dx.doi.org/10.2196/mhealth.2539 | DOI Listing |
BMJ Open
December 2024
The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
Introduction: Prone positioning with head rotation can influence cerebral haemodynamics, potentially affecting cerebral perfusion and oxygenation. Elderly patients with impaired brain perfusion and oxygenation are at an increased risk of developing postoperative delirium (POD). Despite this, few studies have explored whether head orientation during prone positioning contributes to POD in older adults, an aspect often overlooked by clinicians.
View Article and Find Full Text PDFBone Jt Open
January 2025
Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Japan.
Aims: Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system.
Methods: We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan.
Int J Surg Case Rep
December 2024
IFSO, USA; Fundación Santa Fe de Bogotá, Colombia.
Introduction And Importance: Situs inversus is an anatomical rare condition in which visceral organs are not located in its normal position, with a reversal anatomical orientation.
Case Presentation: We present a case of an 27-year-old male with a Body Mass Index (BMI) of 36.02 Kg/m2, who was programed for a Endoscopic Sleeve Gastroplasty (ESG), in which Situs inversus was documented.
Proc Natl Acad Sci U S A
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China.
TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.
View Article and Find Full Text PDFSci Rep
December 2024
Healthy Children Project Inc, 159 Long Pond Drive, Harwich, MA, 02645, USA.
Skin-to-skin contact between the mother and baby during the first hour after birth has significant benefits for mother, newborn and breastfeeding. However, optimal implementation is highly variable. The 2023 International Guidelines on skin-to-skin contact in the first hour after birth place high confidence in the evidence that immediate, continuous, uninterrupted skin-to-skin contact should be routine for all mothers and all babies over 1000 g, regardless of mode of delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!