Folding molecular dynamics simulations amounting to a grand total of 4 μs of simulation time were performed on two peptides (with native and mutated sequences) derived from loop 3 of the vammin protein and the results compared with the experimentally known peptide stabilities and structures. The simulations faithfully and accurately reproduce the major experimental findings and show that (a) the native peptide is mostly disordered in solution, (b) the mutant peptide has a well-defined and stable structure, and (c) the structure of the mutant is an irregular β-hairpin with a non-glycine β-bulge, in excellent agreement with the peptide's known NMR structure. Additionally, the simulations also predict the presence of a very small β-hairpin-like population for the native peptide but surprisingly indicate that this population is structurally more similar to the structure of the native peptide as observed in the vammin protein than to the NMR structure of the isolated mutant peptide. We conclude that, at least for the given system, force field, and simulation protocol, folding molecular dynamics simulations appear to be successful in reproducing the experimentally accessible physical reality to a satisfactory level of detail and accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp5046113 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, New York University, New York, NY 10003.
Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.
View Article and Find Full Text PDFCells
January 2025
Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA.
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
December 2024
Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University Motihari Motihari, Bihar 845401, India.
Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.
View Article and Find Full Text PDFEnviron Epigenet
January 2025
Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Fine particulate matter (PM), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM exposure and its association with asthma in human airway epithelial cells.
View Article and Find Full Text PDFFood Res Int
February 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China. Electronic address:
The ethanol-induced BALB/c mice and human gastric epithelial cell (Ges-1 cell) models were used to investigate the Sargassum siliquastrum fucoidan (SFuc) gastroprotective capability. The injury score and histopathological sections of the stomach were used to evaluate the gastroprotective capability. The western blotting and RT-PCR methods determined the signaling mechanism of mice's gastric injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!