DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. Genes implicated in the Toll-like receptor signalling pathway, IFN inducible/regulatory proteins, numerous sequences implicated in apoptosis and cytotoxic pathways, MHC class I antigens, as well as complement and coagulation cascades among others were analyzed in the different experimental groups. Fish receiving the pMCV1.4-G860 vaccine showed transcriptomic patterns very different to the ones observed in pMCV1.4-injected turbot after 72 h. On the other hand, VHSV challenge in vaccinated and non-vaccinated turbot induced a highly different response at the transcriptome level, indicating a very relevant role of the acquired immunity in vaccinated fish able to alter the typical innate immune response profile observed in non-vaccinated individuals. This exhaustive transcriptome study will serve as a complete overview for a better understanding of the crosstalk between the innate and adaptive immune response in fish after viral infection/vaccination. Moreover, it provides interesting clues about molecules with a potential use as vaccine adjuvants, antiviral treatments or markers for vaccine efficiency monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123995PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104509PLOS

Publication Analysis

Top Keywords

associated vhsv
8
vhsv infection
8
turbot scophthalmus
8
scophthalmus maximus
8
dna vaccines
8
vaccinated non-vaccinated
8
immune response
8
vhsv
5
dna
5
turbot
5

Similar Publications

Interferon regulatory factor 2 of red-spotted grouper (Epinephelus akaara): insights into its transcriptional profiling, antiviral potential, and function in macrophage polarization.

Dev Comp Immunol

January 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea. Electronic address:

Interferon regulatory factor 2 (IRF2) is a member of the IRF family that is specifically involved in diverse immune responses via interferon (IFN)/IRF-dependent signaling pathways. In this study, IRF2 of Epinephelus akaara (EAIRF2) was identified and characterized by evaluating its structural and functional properties. EAIRF2 showed the highest homology with IRF2 of Epinephelus coioides and clustered with teleosts in the phylogenetic tree.

View Article and Find Full Text PDF

CRISPR/Cas9-induced knockout of tumor necrosis factor-alpha-type I augments viral infection in zebrafish.

Fish Shellfish Immunol

February 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Gidang Marine Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Tumor necrosis factor-alpha (TNF-α) is a pleiotropic cytokine with critical roles in inflammation, cell survival, and defense. As a member of the TNF superfamily, it exerts its effects by binding to transmembrane receptors and triggering various downstream signaling pathways. Although TNF-α's involvement in antiviral responses in mammals is well-established, its role in teleost remains poorly understood.

View Article and Find Full Text PDF

Characterization of tumor necrosis factor receptor-associated factor 2 (TRAF2) in red-spotted grouper (Epinephelus akaara): In vivo and in vitro investigation of its role in the regulation of antiviral immunity and cell death.

Fish Shellfish Immunol

February 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a key adaptor molecule in tumor necrosis factor receptor signaling complexes, facilitating downstream immune-related signaling cascades. This study aimed to elucidate its function in teleost fish by characterizing the TRAF2 homolog of the red-spotted grouper (Epinephelus akaara, EaTraf2). The open reading frame of EaTraf2 encodes a putative protein of 520 amino acids, containing several characteristic domains of TRAF2.

View Article and Find Full Text PDF

Endoplasmic reticulum stress triggers unfolded protein response as an antiviral strategy of teleost erythrocytes.

Front Immunol

December 2024

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain.

Introduction: Fish nucleated red blood cells (RBCs), also known as erythrocytes, play a crucial role in maintaining immune system balance by modulating protein expression in response to various stimuli, including viral attack. This study explores the intriguing behavior of rainbow trout RBCs when faced with the viral hemorrhagic septicemia virus (VHSV), focusing on the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR).

Methods: Rainbow trout RBCs were Ficoll-purified and exposed to ultraviolet (UV)-inactivated VHSV or live VHSV at different multiplicities of infection (MOIs).

View Article and Find Full Text PDF

Bacterial and viral infections cause a huge burden to healthcare settings worldwide, and mortality rates associated with infectious microorganisms have remained high in recent decades. Despite tremendous efforts and resources worldwide to explore diagnostic biomarkers, rapid and easily assayed indicators for the diagnosis of bacterial and viral infections remain a challenge. B7 homolog 3 (B7-H3), a member of the B7 family of immunoregulatory proteins, is overexpressed in patients with septicemia, meningitis, pneumonia, and hepatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!