Peroxisomes play an essential role in human cellular metabolism. Peroxisomal disorders, a group of genetic diseases caused by peroxisomal dysfunction, can be classified into three groups: (1) disorders of peroxisome biogenesis with a generalized loss of peroxisomal functions (Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease, hyperpipecolic acidaemia); (2) disorders with a loss of multiple peroxisomal functions (rhizomelic chondrodysplasia punctata and Zellweger-like syndrome; (3) disorders with loss of a single peroxisomal function (X-linked adrenoleukodystrophy, peroxisomal thiolase deficiency, bifunctional protein deficiency, acyl-CoA oxidase deficiency, classic Refsum disease, hyperoxaluria type I and acatalasaemia). Prenatal diagnosis is indicated in all these genetic disorders with the exception of classic Refsum disease, most types of hyperoxaluria type I and acatalasaemia. A variety of techniques is available now for the prenatal diagnosis of peroxisomal disorders in the first or second trimester of gestation. Prenatal diagnosis was performed by us in 70 pregnancies at risk for a disorder of peroxisome biogenesis, three for rhizomelic chondrodysplasia punctata, four for X-linked adrenoleukodystrophy and two for a defect in peroxisomal beta-oxidation. Fourteen affected fetuses were identified; no false negative cases were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01799291DOI Listing

Publication Analysis

Top Keywords

peroxisomal disorders
12
refsum disease
12
prenatal diagnosis
12
peroxisomal
9
diagnosis peroxisomal
8
peroxisome biogenesis
8
peroxisomal functions
8
disorders loss
8
rhizomelic chondrodysplasia
8
chondrodysplasia punctata
8

Similar Publications

Liver disease poses a significant threat to global public health, with arsenic (As) recognized as a major environmental toxin contributing to liver injury. However, the specific mechanisms and the protective effects of α-lipoic acid (LA) remain unclear. Therefore, this study employs network toxicology and network pharmacology to comprehensively analyze the hepatotoxic mechanism of As and the hepatoprotective mechanism of LA, and further verifies the mechanisms of peroxisomal β-oxidation and lipophagy in the process.

View Article and Find Full Text PDF

Background: The use of exome sequencing (ES) has helped in detecting many variants and genes that cause primary adrenal insufficiency (PAI). The diagnosis of PAI is difficult and can be life-threatening if not treated urgently. Consanguinity can impact the detection of recessively inherited genes.

View Article and Find Full Text PDF

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Whole exome sequencing reveals ABCD1 variant as a potential contributor to male infertility.

Mol Biol Rep

January 2025

Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.

Background: Male infertility (MI) is a polygenic condition mainly induced by spermatogenic failure/arrest or systemic disease with a large clinical spectrum. Lately, genetic sequencing allowed the identification of several variants implicated in both aforesaid situations.

Methods And Results: In this case study, we performed whole exome sequencing (WES) on the genomic DNA of a 37-year-old Moroccan man with Non-Obstructive Azoospermia.

View Article and Find Full Text PDF

Zellweger spectrum disorder presenting with opsoclonus-myoclonus-ataxia syndrome: a case report on immunotherapy.

Acta Neurol Belg

January 2025

Department of Pediatrics, Neurology Unit, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey.

Introduction: Zellweger spectrum disorder (ZSD) refers to a group of autosomal recessive genetic disorders that affect multiple organ systems and are predominantly caused by pathogenic variants in PEX genes. ZSD present a wide clinical spectrum, ranging from the most severe form, Zellweger syndrome, to the mildest form, Heimler syndrome.

Case Report: A 14-month-old male patient was brought to our clinic with recent-onset ocular tremors and unsteady gait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!