Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

Mol Pharmacol

National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (X.G., H.Y., N.-S.C., M.S.-S., S.K.-B., Y.T.N., S.F.); Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (G.N., E.M., J.M., A.C., C.L., E.I.C., V.C., P.J.M.); and School of Pharmacy, University of East Anglia, Norwich, United Kingdom (P.J.M.)

Published: October 2014

The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164978PMC
http://dx.doi.org/10.1124/mol.114.093096DOI Listing

Publication Analysis

Top Keywords

d1r d3r
20
d1r-d3r heteromer
16
d3r agonists
12
functional selectivity
8
selectivity allosteric
8
heteromer involved
8
activation induced
8
d1r
8
d1r agonists
8
positive cross
8

Similar Publications

Chemistry to cognition: Therapeutic potential of (m-CF-PhSe) targeting rats' striatum dopamine proteins in amphetamine dependence.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:

Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.

View Article and Find Full Text PDF

Purpose: The location characteristic of the lumbar 3 sympathetic trunk under Computed Tomography (CT) was discovered through 106 cases, imaging analysis after successful lumbar 3 sympathetic radiofrequency thermocoagulation operations serving the clinic and reducing the operation time.

Methods: There are 113 patients underwent bilateral L3 lumbar sympathetic thermal radiofrequency procedures in our hospital from January 2017 to January 2021, with 106 cases of successful procedure. Four operation image distances were measured: 1.

View Article and Find Full Text PDF

Risky decision making involves the ability to weigh risks and rewards associated with different options to make adaptive choices. Previous work has established a necessary role for the basolateral amygdala (BLA) in mediating effective decision making under risk of punishment, but the mechanisms by which the BLA mediates this process are less clear. Because this form of decision making is profoundly sensitive to dopaminergic (DA) manipulations, we hypothesized that DA receptors in the BLA may be involved in risk-taking behavior.

View Article and Find Full Text PDF

IRL790 modulated striatal D1 neurons synaptic plasticity ameliorating levodopa-induced dyskinesia in mouse.

Front Aging Neurosci

May 2024

Guangdong Provincial Key Laboratory on Brain, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Objective: Levodopa (L-dopa) therapy is the principal pharmacological treatment for Parkinson's disease (PD). Nevertheless, prolonged use of this drug may result in different involuntary movement symptoms caused by the medication, referred to as levodopa-induced dyskinesia (LID). LID is associated with changes in synaptic plasticity of the D1 medium spiny neurons (MSNs) located in the dorsal striatum (dStr).

View Article and Find Full Text PDF

Presynaptic and Postsynaptic Mesolimbic Dopamine D Receptors Play Distinct Roles in Cocaine Versus Opioid Reward in Mice.

Biol Psychiatry

November 2024

Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland. Electronic address:

Background: Past research has illuminated pivotal roles of dopamine D receptors (DR) in the rewarding effects of cocaine and opioids. However, the cellular and neural circuit mechanisms that underlie these actions remain unclear.

Methods: We employed Cre-LoxP techniques to selectively delete DR from presynaptic dopamine neurons or postsynaptic dopamine D receptor (DR)-expressing neurons in male and female mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!