Structural stability and unfolding properties of cutinases from Thermobifida fusca.

Appl Biochem Biotechnol

Biochemical Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.

Published: September 2014

A comparative analysis of the structural and functional aspects along with equilibrium unfolding of two homologous cutinases, Cut1 and Cut2, from Thermobifida fusca was carried out. The CD and fluorescence profile at different pH in the range of 6 to 9 showed no structural variations for both cutinases, indicating their stability to a wide range of pH. Tryptophan quenching studies suggested that all the four Trp residues in the protein are in inaccessible hydrophobic pockets. Further, near-UV CD analysis of tertiary structure revealed a dissimilar distribution of aromatic amino acid on the surface of these two enzymes. Denaturation profiles obtained in aqueous solutions of the guanidine hydrochloride revealed different tolerance levels for unfolding of the two cutinases, with Cut2 showing higher resistivity to unfolding in comparison to Cut1. Both cutinases retained all the structural parameters even in the presence of 8 M urea, indicating the protein to be highly resistant to urea-induced unfolding. Structural study by homology modeling revealed a high resemblance of secondary structure between the two cutinases; however, their tertiary structure, hydrophobicity, and surface electrostatic properties were very different, which contributed to the difference in the structural stability of these two cutinases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-014-1037-5DOI Listing

Publication Analysis

Top Keywords

structural stability
8
thermobifida fusca
8
tertiary structure
8
cutinases
7
structural
6
unfolding
5
stability unfolding
4
unfolding properties
4
properties cutinases
4
cutinases thermobifida
4

Similar Publications

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Application of biomass carbon dots in food packaging.

Environ Sci Pollut Res Int

January 2025

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.

View Article and Find Full Text PDF

Stability analysis of an expansive soil slope under heavy rainfall conditions with different anchor reinforcements.

Sci Rep

January 2025

Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai, 200000, China.

This study investigates the vulnerability of expansive soil slopes to destabilization and damage, particularly under intense rainfall, due to their heightened sensitivity to moisture. Focusing on a project in Yunnan Province, numerical simulation software is employed to address slope stability challenges. Meanwhile, the soil mechanical parameters of this study were acquired through experimentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!