The Vale-Maurelli (VM) approach to generating non-normal multivariate data involves the use of Fleishman polynomials applied to an underlying Gaussian random vector. This method has been extensively used in Monte Carlo studies during the last three decades to investigate the finite-sample performance of estimators under non-Gaussian conditions. The validity of conclusions drawn from these studies clearly depends on the range of distributions obtainable with the VM method. We deduce the distribution and the copula for a vector generated by a generalized VM transformation, and show that it is fundamentally linked to the underlying Gaussian distribution and copula. In the process we derive the distribution of the Fleishman polynomial in full generality. While data generated with the VM approach appears to be highly non-normal, its truly multivariate properties are close to the Gaussian case. A Monte Carlo study illustrates that generating data with a different copula than that implied by the VM approach severely weakens the performance of normal-theory based ML estimates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11336-014-9414-0DOI Listing

Publication Analysis

Top Keywords

non-normal multivariate
8
underlying gaussian
8
monte carlo
8
distribution copula
8
general vale-maurelli
4
vale-maurelli simulation
4
simulation approach?
4
approach? vale-maurelli
4
vale-maurelli approach
4
approach generating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!