Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned-creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-014-0333-8DOI Listing

Publication Analysis

Top Keywords

renewable energy
20
adaptive planning
16
planning
10
energy
9
planning operation
8
operation strategies
8
wildlife planning
8
green versus
8
versus green
8
green dilemma
8

Similar Publications

Scaling Behavior and Conductance Mechanisms of Ion Transport in Atomically Thin Graphene Nano/Subnanopores.

Nano Lett

January 2025

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.

Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations.

View Article and Find Full Text PDF

Basin-Size Mapping: Prediction of Metastable Polymorph Synthesizability Across TaC-TaN Alloys.

J Am Chem Soc

January 2025

Department of Metallurgical and Materials Enginerring, Colorado School of Mines, Golden, Colorado 80401, United States.

The sizes of the basins of attraction on the potential energy surface are helpful indicators in determining the experimental synthesizability of metastable phases. In principle, these basins can be controlled with changes in thermodynamic conditions such as composition, pressure, and surface energy. Herein, we use random structure sampling to computationally study how alloying smoothly perturbs basin of attraction sizes.

View Article and Find Full Text PDF

Solar photovoltaic (PV) is critical for achieving the 2030 global target of tripling renewable power capacity. Over the past two decades, the global supply chain has significantly reduced the cost of solar PV products enabling widespread adoption. However, many countries are now implementing decoupling measures to enhance supply chain security and boost local economies.

View Article and Find Full Text PDF

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

Chemical design of metal complexes for electrochemical water oxidation under acidic conditions.

Dalton Trans

January 2025

National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.

The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!