The present study proposed competitive adaptive reweighted sampling (CARS) algorithm to be used to select the key variables from near-infrared hyperspectral imaging data of "Ya" pear. The performance of the developed model was evaluated in terms of the coefficient of determination(r2), and the root mean square error of prediction (RMSEP) and the ratio (RPD) of standard deviation of the validation set to standard error of prediction were used to evaluate the performance of proposed model in the prediction process. The selected key variables were used to build the PLS model, called CARS-PLS model. Comparing results obtained from CARS-PLS model and results obtained from full spectra PLS, it was found that the better results (r(2)pre = 0. 908 2, RMSEP=0. 312 0 and RPD=3. 300 5) were obtained by CARS-PLS model based on only 15. 6% information of full spectra. Moreover, performance of CARS-PLS model was also compared with PLS models built by using variables got by Monte Carlo-uninformative variable elimination (MC-UVE) and genetic algorithms (GA) method. The result found that CARS variable selection algorithm not only can remove the uninformative variables in spectra, but also can reduce the collinear variables from informative variables. Therefore, this method can be used to select the key variables of near-infrared hyperspectral imaging data. This study showed that near-infrared hyperspectral imaging technology combined with CARS-PLS model can quantitatively predict the soluble solids content (SSC) in "Ya" pear. The results presented from this study can provide a reference for predicting other fruits quality by using the near-infrared hyperspectral imaging.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!