Objective: To study the protected effect of Yindan Xinnaotong capsule (YDXNTC) and main components compatibility on myocardium ischemia/reperfusion injury.

Method: Global ischemia/reperfusion was adopted to induce myocardial ischemia/reperfusion injury (MIRI) in isolated rat heart. Sprague-Dawley (SD) rats were divided into control, model, YDXNTC, Ginkgo biloba extract (GBE) group, ethanol extract of Salvia miltiorrhiza (SM-E) group, aqueous extract of Salvia miltiorrhiza (SM-H) group, mixed compatibility of other components in YDXNTC (MC), GBE and SM-E compatibility (GSEC), GBE and SM-H compatibility (GSHC), and SM-E and SM-H compatibility (SEHC). During the experiment, electrocardiogram was recorded to observe cardiac arrest time, heart resuscitation time, regaining normal rhythm time, the incidence and duration of arrhythmias (VT/VF). At the end of reperfusion, hearts were arrested and homogenated to assay the activity of superoxide dismutase (SOD), and the content of malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), cardiac troponin I.

Result: (1) YDXNTC, SM-E, SM-H and MC elevated cardiac arrest time, also reduced rebeating time, restoring normal rhythm time as well as the duration of arrhythmia, but no remarkable impact on VT/VF occurrence. GBE was effective for incidence of VT/VF, also achieved good effect on shortening rebeating time, restoring normal rhythm time and arrhythmia duration. Likewise, obviously reduced rebeating time, restoring normal rhythm time and arrhythmia duration, and evaluated cardiac arrest time were also exhibited in compatibility groups except that no lengthened cardiac arrest time was detected in GSHC. And the incidence of VT/VF was decreased by GSEC. (2) YDXNT, ginkgo biloba extract (GBE), ethanol extract of salvia miltiorrhiza (SM-E), GBE and SM-E compatibility (GSEC), and SM-E and aqueous extract of salvia miltiorrhiza (SM-H) compatibility (SEHC) could improved SOD and decreased MDA level SM-H, mixed compatibility of other elements in YDXNTC (MC) and GBE and SM-H compatibility (GSHC) showed a role on MDA reduction. (3) LDH was declined by YDXNT and SM-H. CK-MB was reduced by GBE, SM-E, SM-H, and GSEC. (4) The release of cTnI was only inhibited by GSEC.

Conclusion: YDXNTC, primary materials and main components compatibility has a certain protection effect on MIRI, its mechanism may be related to antioxidant and calcium overload reduction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

extract salvia
16
salvia miltiorrhiza
16
sm-h compatibility
16
cardiac arrest
16
arrest time
16
normal rhythm
16
rhythm time
16
compatibility
12
gbe sm-e
12
sm-e sm-h
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!