A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extracting kinetic information from human motor cortical signals. | LitMetric

Extracting kinetic information from human motor cortical signals.

Neuroimage

Department of Neurology, Northwestern University, Chicago, IL 60611, USA; Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL 60611, USA; The Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.

Published: November 2014

Brain machine interfaces (BMIs) have the potential to provide intuitive control of neuroprostheses to restore grasp to patients with paralyzed or amputated upper limbs. For these neuroprostheses to function, the ability to accurately control grasp force is critical. Grasp force can be decoded from neuronal spikes in monkeys, and hand kinematics can be decoded using electrocorticogram (ECoG) signals recorded from the surface of the human motor cortex. We hypothesized that kinetic information about grasping could also be extracted from ECoG, and sought to decode continuously-graded grasp force. In this study, we decoded isometric pinch force with high accuracy from ECoG in 10 human subjects. The predicted signals explained from 22% to 88% (60 ± 6%, mean ± SE) of the variance in the actual force generated. We also decoded muscle activity in the finger flexors, with similar accuracy to force decoding. We found that high gamma band and time domain features of the ECoG signal were most informative about kinetics, similar to our previous findings with intracortical LFPs. In addition, we found that peak cortical representations of force applied by the index and little fingers were separated by only about 4mm. Thus, ECoG can be used to decode not only kinematics, but also kinetics of movement. This is an important step toward restoring intuitively-controlled grasp to impaired patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2014.07.049DOI Listing

Publication Analysis

Top Keywords

grasp force
12
human motor
8
force
7
grasp
5
ecog
5
extracting kinetic
4
kinetic human
4
motor cortical
4
cortical signals
4
signals brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!