Polychlorinated biphenyl exposure and glucose metabolism in 9-year-old Danish children.

J Clin Endocrinol Metab

Department of Environmental Medicine (T.K.J., A.G.T., L.I.R., C.D., F.N., P.G.), Department of Sports Science and Clinical Biomechanics (M.R.L., A.G., L.B.A.), Institute of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark; and Department of Biostatistics (O.H.H., T.S.), University of Copenhagen, DK-1165 Copenhagen, Denmark.

Published: December 2014

Context: Human exposure to polychlorinated biphenyls (PCBs) has been associated to type 2 diabetes in adults.

Objective: We aimed to determine whether concurrent plasma PCB concentration was associated with markers of glucose metabolism in healthy children.

Setting And Design: Cross-sectional study of 771 healthy Danish third grade school children ages 8-10 years in the municipality of Odense were recruited in 1997 through a two-stage cluster sampling from 25 schools stratified according to location and socioeconomic character; 509 (9.7 ± 0.8 y, 53% girls) had adequate amounts available for PCB analyses.

Outcome Measures: Fasting serum glucose and insulin were measured and a homeostasis assessment model of insulin resistance (HOMA-IR) and β-cell function (HOMA-B) calculated. Plasma PCB congeners and other persistent compounds were measured and ΣPCB calculated.

Results: PCBs were present in plasma at low concentrations, median, 0.19 μg/g lipid (interquartile range, 0.12-0.31). After adjustment for putative confounding factors, the second, third, fourth, and fifth quintiles of total PCB were significantly inversely associated with serum insulin (-14.6%, -21.7%, -18.9%, -23.1%, P trend < .01), compared with the first quintile, but not with serum glucose (P = .45). HOMA-IR and HOMA-B were affected in the same direction due to the declining insulin levels with increasing PCB exposure. Similar results were found for individual PCB congeners, for βHCB (hexachlorobenzen) and pp-DDE (dichlorodiphenyldichloroethylene).

Conclusions: A strong inverse association between serum insulin and PCB exposure was found while fasting glucose remained within the expected narrow range. Our findings suggest that PCB may not exert effect through decreased peripheral insulin sensitivity, as seen in obese and low-fit children, but rather through a toxicity to β-cells. It remains to be demonstrated whether lower HOMA-B is caused by destruction of β-cell-reducing peripheral insulin resistance and thereby increase fasting glucose as previously found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255114PMC
http://dx.doi.org/10.1210/jc.2014-1683DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
8
pcb
8
plasma pcb
8
serum glucose
8
insulin resistance
8
pcb congeners
8
serum insulin
8
pcb exposure
8
fasting glucose
8
peripheral insulin
8

Similar Publications

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Background: Family income to poverty ratio (PIR) may have independent effects on diet and lifestyle factors and the development of prediabetes and diabetes, as well as on mortality. It is unclear how the protective effect of a healthy lifestyle against death differs between individuals with different glucose metabolic profiles and whether PIR mediates this effect. This study aimed to explore whether healthy lifestyle and family PIR reduced the risk of all-cause mortality in participants with different metabolic status and the mediating role of PIR.

View Article and Find Full Text PDF

Purpose Of The Review: Ultra-processed foods (UPFs) represent foods that have undergone substantial industrial processing, such as the addition of preservatives and various other ingredients, thereby making them more tasty, appealing and easy to consume. UPFs are often rich in sugars, saturated fats and salt, while they are low in essential nutrients.The aim of this review is to examine the relationship between the widespread consumption of UPFs and the development of obesity among children and adolescents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!