Food-derived phytochemicals, many known for their health beneficial effects, often exist in conjugated forms containing sugar moieties such as glucose or rhamnose in foods. The uptake of these compounds requires colonic bacterial cleavage of sugar moieties. However, most studies involved in screening extracts for biological activities do not take this process into account. This study seeks to determine the utility of commercially available hesperidinase to mimic colonic digestion and to test the effects of this treatment on the biological properties of extracts. Using hesperidinase resulted in efficient hydrolysis of Engelhardia roxburghiana Wall. extract containing rhamnose conjugates. Enzymatic digestion enhanced the extract's cellular antioxidant ability by 2-fold in HepG2/C3A and the anti-inflammatory effect on lipopolysaccharide-induced interleukin (IL)-1β and IL-6 expression in mouse macrophage J774A.1 and human monocyte THP-1 cells. Enzymatic digestion also efficiently processed extracts with mixed rhamnose and glucose conjugates and altered their biological activities. Results of the present study supported the importance of considering enzymatic digestion during the biological activity studies of botanicals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf501963aDOI Listing

Publication Analysis

Top Keywords

enzymatic digestion
16
cellular antioxidant
8
sugar moieties
8
biological activities
8
digestion
5
utility hesperidinase
4
hesperidinase food
4
food function
4
enzymatic
4
function enzymatic
4

Similar Publications

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Background/purpose: The efficacy of riboflavin-ultraviolet-A (RF-UVA) treatment in crosslinking collagen and improving dentin bonding has been proven. However, biodegradation of the hybrid layer may compromise the bonding. The purpose of this study was to evaluate different RF-UVA treatments regarding their ability to preserve dentin bonding from enzymatic digestion.

View Article and Find Full Text PDF

Background/purpose: Pulp polyp is often eliminated as dental waste. Pulp polyp cells were reported to have high proliferation activity which might be comprised of stem cells. However, little has been known on the presence of stem cells in the pulp polyp.

View Article and Find Full Text PDF

Valorization of wheat straw through enhancement of cellulose accessibility, xylan elimination and lignin removal by choline chloride:p-toluenesulfonic acid pretreatment.

Int J Biol Macromol

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:

Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.

View Article and Find Full Text PDF

The accurate quantification of glycemic index (GI) remains crucial for diabetes management, yet current methodologies are constrained by resource intensiveness and methodological limitations. digestion models face challenges in replicating the dynamic conditions of the human gastrointestinal tract, such as enzyme variability and multi-time point analysis, leading to suboptimal predictive accuracy. This review proposes an integrated technological framework combining non-enzymatic electrochemical sensing with artificial intelligence to revolutionize GI assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!