Dimeric stilbene glucosides 1-3 [two diastereomers of (-)-gnemonoside A (1a and 1b), (-)-gnemonoside C (2), and (-)-gnemonoside D (3)] as well as a mixture of the two enantiomers of gnetin C (4) were isolated from the rhizomes of Gnetum africanum. The two enantiomers of gnetin C, (+)-4 and (-)-4, were obtained from the aglycones of 1a and 1b, respectively. The configurations of these stilbenoids were investigated by NMR and vibrational circular dichroism (VCD) experiments. The absolute configurations of (-)-1a, (-)-2, (-)-3, and (-)-4 were established as 7aS,8aS by VCD spectroscopy in combination with density functional theory calculations. The antiamyloidogenic activity of the isolated stilbenes was also evaluated versus beta-amyloid fibrils. The four glucosides of gnetin C (1a, 1b, 2, and 3) were found to be the most active compounds, with inhibition percentages of 56, 56, 58, and 54 at 10 μM, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/np500427v | DOI Listing |
J Nat Prod
January 2025
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 03 Hradec Kralove, Czech Republic.
An activity-guided isolation study on the EtOH extract prepared from the bulbs of yielded four new phenolic compounds, including a new stilbenoid (), a new homoisoflavonoid derivative (), a new homoisoflavonoid dimer (), and an unprecedented homoisoflavone-stilbene heterodimer (), together with six known (-) analogs. Their chemical structures were elucidated by spectroscopic analysis and theoretical NMR and ECD calculations. Compounds and are unique in their scaffolds.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France.
Stilbenes are specialized metabolites that are particularly abundant in species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA).
View Article and Find Full Text PDFMolecules
December 2024
Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, University of Bordeaux, F-33140 Villenave d'Ornon, France.
Resveratrol and its glucoside, piceid, are the primary stilbenes present in wine. These compounds are well known for their pharmaceutical properties. However, these compounds can undergo chemical transformations in wines, such as polymerization in the presence of metallic reagents.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil.
The respiratory syncytial virus (RSV) matrix protein plays key roles in the virus life cycle and is essential for budding, as it stimulates the optimal membrane curvature necessary for the emergence of viral particles. Resveratrol, a polyphenol (3,4',5-trihydroxy-trans-stilbene) produced by plants, exhibits pharmacological effects, including anti-inflammatory and antiviral activities. In this study, resveratrol was tested in HEp-2 (Epidermoid carcinoma of the larynx cell) cells for its post-infection effects, and recombinant M protein was produced to characterize the biophysical mechanisms underlying this interaction.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India.
In the present study, we have synthesized and thoroughly characterized two Ru(II) dimers with compositions [(ttpy)Ru(tpvpt')Ru(ttpy)](ClO) and [(ttpy)Ru(t'pvpvpt')Ru(ttpy)](ClO) incorporating phenylene-vinylene-substituted terpyridine bridging ligands capable of coordinating in both an NNN- and cyclometalated NNC-fashion. The complexes display strong absorption across the entire UV-vis spectral domain and exhibit luminescence in the NIR region (820-850 nm). The N atoms in the outer coordination sphere were employed for alteration of the photoredox behaviors of the complexes via acid-base equilibria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!