Targeted drug delivery to cancer cells by use of antibody-conjugated liposomes (immunoliposomes) has attracted considerable interest in recent years. Despite increasing efforts in developing immunoliposomes as drug carriers, the investigation of useful tumor-associated antigen targets is far from complete. Carbonic anhydrase IX (CA IX) is a cell surface antigen characterized by hypoxia-induced expression in many solid tumors. This study investigated the feasibility of CA IX-directed immunoliposomes for targeted delivery of docetaxel to human lung cancer cells in vitro. Docetaxel-loaded immunoliposomes targeting CA IX were developed with an encapsulation efficiency of 84.4±3.9% and an average particle size of 143.9±11.1 nm. Using fluorescence-based flow cytometry, the in vitro binding activity of the immunoliposomes was found to be significantly higher (by 1.65-fold) than that of the nontargeted liposomes in CA IX-positive lung cancer cells, whereas no such difference was observed between the two groups when CA IX was not expressed. Furthermore, immunoliposomal docetaxel exhibited the strongest growth inhibitory effect against CA IX-positive lung cancer cells when compared with nontargeted liposomal docetaxel or free docetaxel solution. These data suggested that CA IX-directed immunoliposomes could serve as a promising drug delivery system for targeted killing of lung cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113570 | PMC |
http://dx.doi.org/10.2147/DDDT.S63235 | DOI Listing |
Mol Aspects Med
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan. Electronic address:
Microplastics (MPs) are known as substantial environmental and health threats because of their pervasive existence and potential function in human diseases. This study is the first research in which a comprehensive analysis of various impacts of MPs on cancer cells is performed through pharmacological and in silico approaches. Moreover, our results demonstrate that MPs have both promotive and suppressive impacts on cancer cells, changing some of the important features of these kinds of cells including cellular viability, migration, metastasis, and apoptosis.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.
Metastasis is a major cause of poor prognosis of pancreatic cancer. Exosomes (Exos) regulate cancer progression by modulating macrophage polarization. This study aimed to investigate the effects of cancer-associated fibroblast (CAF)-released Exos on macrophage polarization in pancreatic cancer and the molecular mechanisms.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA. Electronic address:
Tumor cells must optimize metabolite acquisition between synthesis and uptake from a microenvironment characterized by hypoxia, lactate accumulation, and depletion of many amino acids, including arginine. We performed a metabolism-focused functional screen using CRISPR-Cas9 to identify pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that this protein functions as a high-affinity citrulline transporter.
View Article and Find Full Text PDFFEBS J
January 2025
Université d'Angers, Inserm, CNRS, CRCI2NA, ICO, Angers, France.
Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.
View Article and Find Full Text PDFAngiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!