Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir.

Proc Natl Acad Sci U S A

Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan;Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;

Published: August 2014

Dimerization of HIV-1 protease (PR) subunits is an essential process for PR's acquisition of proteolytic activity, which plays a critical role in the maturation of HIV-1. Recombinant wild-type PR (PR(WT)) proved to dimerize, as examined with electrospray ionization mass spectrometry; however, two active site interface PR mutants (PR(T26A) and PR(R87K)) remained monomeric. On the other hand, two termini interface PR mutants (PR(1-C95A) and PR(97/99)) took both monomeric and dimeric forms. Differential scanning fluorimetry indicated that PR(1-C95A) and PR(97/99) dimers were substantially less stable than PR(WT) dimers. These data indicate that intermolecular interactions of two monomers occur first at the active site interface, generating unstable or transient dimers, and interactions at the termini interface subsequently occur, generating stable dimers. Darunavir (DRV), an HIV-1 protease inhibitor, inhibits not only proteolytic activity but also PR dimerization. DRV bound to protease monomers in a one-to-one molar ratio, inhibiting the first step of PR dimerization, whereas conventional protease inhibitors (such as saquinavir) that inhibit enzymatic activity but not dimerization failed to bind to monomers. DRV also bound to mutant PRs containing the transframe region-added PR (TFR-PR(D25N) and TFR-PR(D25N-7AA)), whereas saquinavir did not bind to TFR-PR(D25N) or TFR-PR(D25N-7AA). Notably, DRV failed to bind to mutant PR containing four amino acid substitutions (V32I, L33F, I54M, and I84V) that confer resistance to DRV on HIV-1. To our knowledge, the present report represents the first demonstration of the two-step PR dimerization dynamics and the mechanism of dimerization inhibition by DRV, which should help design further, more potent novel PIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142999PMC
http://dx.doi.org/10.1073/pnas.1400027111DOI Listing

Publication Analysis

Top Keywords

hiv-1 protease
12
dimerization
8
dimerization hiv-1
8
dimerization inhibition
8
proteolytic activity
8
active site
8
site interface
8
interface mutants
8
termini interface
8
pr1-c95a pr97/99
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!