The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity.

Biochim Biophys Acta

Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA. Electronic address:

Published: February 2015

Proteotoxicity refers to the detrimental effects of damaged/misfolded proteins on the cell. Cardiac muscle is particularly susceptible to proteotoxicity because sustained and severe proteotoxic stress leads to cell death and the cardiac muscle has very limited self-renewal capacity. The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) are two major pathways responsible for degradation of most cellular proteins. Alterations of UPS and ALP functions are associated with the accumulation of proteotoxic species in the heart, a key pathological feature of common forms of heart disease including idiopathic, ischemic, and pressure-overloaded cardiomyopathies and a large subset of congestive heart failure. Emerging evidence suggests that proteasome inhibition or impairment activates autophagy and conversely, acute ALP inhibition may sometimes increase intrinsic proteasome peptidase activities but chronic ALP inhibition hinders UPS performance in ubiquitinated protein degradation. The exact molecular basis on which the two degradative pathways interact remains largely undefined. Here we review current understanding of the roles of the UPS and autophagy in the control of cardiac proteotoxicity, with a specific focus on the crosstalk between the two pathways. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277934PMC
http://dx.doi.org/10.1016/j.bbadis.2014.07.028DOI Listing

Publication Analysis

Top Keywords

ubiquitin-proteasome system
8
cardiac proteotoxicity
8
cardiac muscle
8
alp inhibition
8
interplay autophagy
4
autophagy ubiquitin-proteasome
4
cardiac
4
system cardiac
4
proteotoxicity
4
proteotoxicity proteotoxicity
4

Similar Publications

Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation.

Biomed Pharmacother

January 2025

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic. Electronic address:

Intracellular protein aggregation causes proteotoxic stress, underlying highly debilitating neurodegenerative disorders in parallel with decreased proteasome activity. Nevertheless, under such stress conditions, the expression of proteasome subunits is upregulated by Nuclear Factor Erythroid 2-related factor 1 (NRF1), a transcription factor that is encoded by NFE2L1. Activating the NRF1 pathway could accordingly delay the onset of neurodegenerative and other disorders with impaired cell proteostasis.

View Article and Find Full Text PDF

Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.

View Article and Find Full Text PDF

In age-related peripheral neurodegeneration, changes in the promotion or inhibition of endoplasmic reticulum (ER) stress response related to the ubiquitin-proteasome degradation system (UPS), autophagy and apoptosis signaling factors during aging remain unclear. In the present study, the expression of ER stress response signaling-related protein factors was examined in tibial nerves during aging in rats. Tibial nerves were extracted from continuously housed rats at 20, 50, 70, 90 and 105 weeks of age.

View Article and Find Full Text PDF

Dysregulation of genes encoding the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases has been linked to cancer and structural birth defects. One member of this family, the HECT-domain-containing protein 1 (HECTD1), mediates developmental pathways, including cell signaling, gene expression, and embryogenesis. Through GeneMatcher, we identified 14 unrelated individuals with 15 different variants in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant) with neurodevelopmental disorders (NDDs), including autism, attention-deficit/hyperactivity disorder, and epilepsy.

View Article and Find Full Text PDF

Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!