Long-term ketamine abuse induces cystitis in rats by impairing the bladder epithelial barrier.

Mol Biol Rep

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.

Published: November 2014

Long-term ketamine abuse is known to affect the lower urinary tract and produce symptoms of cystitis. However, the pathophysiology and causative mechanism of the changes in bladder function remain unclear. The present study aimed to investigate the existence of ketamine-induced cystitis in a rat model and characterize the underlining mechanisms. Rats were assigned to blank control, normal saline (NS), low-dose ketamine (LK, 5 mg/kg), and high-dose ketamine (HK, 50 mg/kg) groups. The two experimental groups received ketamine hydrochloride daily for 16 weeks. All rats were housed individually for assessment of urinary frequency and urine volume. Urinary biomarkers were measured at different time points. Rat bladders were excised for histopathology, immunohistochemistry, and western blot analysis. Ketamine-treated rats had increased urinary frequency compared to NS-treated rats at Week 16. Urinary nitric oxide and antiproliferative factor levels were increased in ketamine-treated rats within the first 30 h after administration. After long-term ketamine administration, urinary glycoprotein GP51 and potassium levels were decreased in the HK and LK groups compared to the NS group. Ketamine-treated rats showed thickened bladder epithelial layer, increased expression of inducible nitric oxide synthase and occludin, and decreased expression of zonula occludens-1 in the bladder wall. Ketamine, or its urinary metabolites, disrupted the proliferation of bladder epithelial cells, resulting in defected bladder epithelial barrier. Subsequent leakage of urinary potassium causes a stress response in the bladder and provokes cystitis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-014-3616-5DOI Listing

Publication Analysis

Top Keywords

bladder epithelial
16
long-term ketamine
12
ketamine-treated rats
12
ketamine abuse
8
epithelial barrier
8
urinary
8
urinary frequency
8
nitric oxide
8
rats
7
bladder
7

Similar Publications

Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.

View Article and Find Full Text PDF

Bladder cancer poses significant clinical challenges due to its high metastatic potential and poor prognosis, especially when it progresses to muscle-invasive stages. Here, we show that the mA reader YTHDC1 is downregulated in muscle-invasive bladder cancer and is negatively correlated with the expression of epithelial‒mesenchymal transition genes. The functional inhibition or depletion of YTHDC1 increased the migration and invasion of urothelial cells.

View Article and Find Full Text PDF

Urothelial carcinoma (UC) can arise from either the lower urinary tract or the upper tract; they represent different disease entities and require different clinical treatment strategies. A full understanding of the cellular characteristics in UC may guide the development of novel therapies. Here, we performed single-cell transcriptome analysis from four patients with UC of the bladder (UCB), five patients with UC of the ureter (UCU), and four patients with UC of the renal pelvis (UCRP) to develop a comprehensive cell atlas of UC.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is a malignant tumor that begins in the cells of the bladder, characterized by poor cell differentiation and strong invasion capacity, with a high incidence rate. Identifying key molecules that enhance BC cells' cisplatin sensitivity can help improve the clinical efficacy of BC treatment. Hence, this study aimed to determine the expression level of long non-coding RNA (lncRNA) ADAM Metallopeptidase with Thrombospondin Type 1 Motif 9 Antisense RNA 1 () in BC and explore its related mechanism underlying the amplification of cisplatin sensitivity.

View Article and Find Full Text PDF

Are causing recurrent cystitis just ordinary uropathogenic (UPEC) strains?

Virulence

December 2025

Department of Infectious Diseases, Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Rouen, France.

Specific determinants associated with Uropathogenic (UPEC) causing recurrent cystitis are still poorly characterized. Using strains from a previous clinical study (Vitale study, clinicaltrials.gov, identifier NCT02292160) the aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!