More than a decade has now passed since the birth of the first endangered species produced from an adult somatic cell reprogrammed by somatic cell nuclear transfer. At that time, advances made in domestic and laboratory animal species provided the necessary foundation for attempting cutting-edge technologies on threatened and endangered species. In addition to nuclear transfer, spermatogonial stem cell transplantation and induction of pluripotent stem cells have also been explored. Although many basic scientific questions have been answered and more than 30 wild species have been investigated, very few successes have been reported. The majority of studies document numerous obstacles that still need to be overcome to produce viable gametes or embryos for healthy offspring production. This chapter provides an overview of somatic cell and stem cell technologies in different taxa (mammals, fishes, birds, reptiles and amphibians) and evaluates the potential and impact of these approaches for animal species conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-0820-2_16DOI Listing

Publication Analysis

Top Keywords

stem cells
12
somatic cell
12
pluripotent stem
8
endangered species
8
nuclear transfer
8
animal species
8
stem cell
8
stem
5
species
5
cell
5

Similar Publications

Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).

View Article and Find Full Text PDF

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic, autoimmune inflammatory disease with a multisystem manifestation and a variety of clinical symptoms. Over the last decades, the prognosis and life expectancy of patients with SLE improved significantly due to the implementation of corticosteroids combined with immunosuppressive agents. Nevertheless, the use of these medications is often associated with the occurrence of serious side effects and additional deterioration of organ function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!