DNA methylation map of human atherosclerosis.

Circ Cardiovasc Genet

From the Division of Health Sciences, Department of Medical Sciences, University of Guanajuato, León, Guanajuato, Mexico (S.Z.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain (H.H., F.J.C., N.V., S.S., A.G., S.M., M.E.); Department of Pathology, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) (E.C.), Barcelona, Spain; Department of Pathology and Experimental Therapeutics (E.C.), Department of Anatomy and Pathology, Hospital Clinic (J.R.-R.), Department of Physiological Sciences II, School of Medicine (M.E.), University of Barcelona, Barcelona, Catalonia, Spain; Experimental Cardiovascular Research, Lund University, Malmö, Sweden (I.G.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.).

Published: October 2014

Background: Epigenetic alterations may contribute to the development of atherosclerosis. In particular, DNA methylation, a reversible and highly regulated DNA modification, could influence disease onset and progression because it functions as an effector for environmental influences, including diet and lifestyle, both of which are risk factors for cardiovascular diseases.

Methods And Results: To address the role of DNA methylation changes in atherosclerosis, we compared a donor-matched healthy and atherosclerotic human aorta sample using whole-genome shotgun bisulfite sequencing. We observed that the atherosclerotic portion of the aorta was hypermethylated across many genomic loci in comparison with the matched healthy counterpart. Furthermore, we defined specific loci of differential DNA methylation using a set of donor-matched aortic samples and a high-density (>450 000 CpG sites) DNA methylation microarray. The functional importance in the disease was corroborated by crossing the DNA methylation signature with the corresponding expression data of the same samples. Among the differentially methylated CpGs associated with atherosclerosis onset, we identified genes participating in endothelial and smooth muscle functions. These findings provide new clues toward a better understanding of the molecular mechanisms of atherosclerosis.

Conclusions: Our data identify an atherosclerosis-specific DNA methylation profile that highlights the contribution of different genes and pathways to the disorder. Interestingly, the observed gain of DNA methylation in the atherosclerotic lesions justifies efforts to develop DNA demethylating agents for therapeutic benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGENETICS.113.000441DOI Listing

Publication Analysis

Top Keywords

dna methylation
32
dna
10
methylation
7
methylation map
4
map human
4
atherosclerosis
4
human atherosclerosis
4
atherosclerosis background
4
background epigenetic
4
epigenetic alterations
4

Similar Publications

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development.

View Article and Find Full Text PDF

Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.

Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.

View Article and Find Full Text PDF

Background And Objectives: Depression often results in premature aging, which increases the risk of other chronic diseases, but very few studies have analyzed the association between epigenetic biomarkers of aging and depressive symptoms. Similarly, limited research has examined the joint effects of adherence to the Mediterranean diet (MedDiet) and chronotype on depressive symptoms, accounting for sex differences. Therefore, these are the objectives of our investigation in a Mediterranean population at high cardiovascular risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!