The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor with a crucial role in calcium homeostasis. Mutations in the CaSR gene may lead to specific parathyroid disorders due to either gain-of-function (autosomal dominant hypercalciuric hypocalcemia; ADHH) or loss-of-function (familial hypocalciuric hypercalcemia; FHH). Our aim was to evaluate CaSR mutations as a cause of disease in selected patients. We identified and recruited patients with phenotypes suggestive of CaSR-related parathyroid disorders. DNA was extracted, and CaSR gene was sequenced. Live-ratiometric measurements of intracellular [Ca(2+)] and Western blot assays for evaluation of MAPK phosphorylation in response to changes in extracellular [Ca(2+)] were performed in transiently transfected HEK-293T cells to functionally characterize mutants. A total of 21 patients were evaluated, seven of them with idiopathic hypoparathyroidism (suspected ADHH) and 14 with hyperparathyroidism (suspected FHH). In the latter group two patients were found to harbor missense mutations: a novel heterozygous I32 V mutation in a female index case and a sporadic known R185Q mutation in a 1-year-old girl. In-vitro functional studies showed that I32 V is an inactivating mutation. In our study, most patients had normal CaSR sequencing. This suggests that phenotypic pitfalls may occur at time of patients' selection for CaSR sequencing. In one patient with strong positive pre-test probability based on both familial history and appropriate phenotype, a novel I32 V mutation leading to FHH was identified and characterized. In cases of familial parathyroid disorders, CaSR sequencing should be performed, but if negative, one should consider involvement of alternative genes or mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-014-0370-3DOI Listing

Publication Analysis

Top Keywords

parathyroid disorders
12
casr sequencing
12
calcium-sensing receptor
8
familial parathyroid
8
casr gene
8
i32 mutation
8
casr
7
patients
6
mutation
5
sequencing
4

Similar Publications

Evaluation of bone mineral density and its influencing factors in patients infected with HIV under antiretroviral therapy.

BMC Infect Dis

January 2025

Department of Infectious Diseases, School of Medicine, Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.

Background: Reduced Bone Mineral Density (BMD) has been linked to Human Immunodeficiency Virus (HIV) infection and treatment. There is a lack of information regarding the osteoporosis status of middle-aged patients with HIV in Iran, despite the fact that Antiretroviral Therapy (ART) is widely accessible.

Objective: The purpose of this cross-sectional study was to assess the BMD status and low BMD risk factors in patients with HIV under ART living in Iran.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (SHPT) is common in patients with end-stage kidney disease (ESKD) on kidney replacement therapy, which leads to abnormalities of bone and mineral metabolism. Patients conceiving on kidney replacement therapy add a further layer of complexity to the management of their SHPT. Existing literature in cases of primary hyperparathyroidism (PHPT) has linked untreated hyperparathyroidism to increased maternal and fetal morbidity, including hypertensive disorders of pregnancy, fetal growth restriction and neonatal hypocalcaemia.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (sHPT) is a significant clinical complication of CKD leading to bone abnormalities and cardiovascular disease. Current treatment based on activating the parathyroid calcium-sensing receptor (CaSR) using calcimimetics such as Cinacalcet, aims to decrease plasma PTH levels and inhibit the progression of parathyroid hyperplasia. In the present study, we found significant diurnal rhythmicity of Casr, encoding the Cinacalcet drug target in hyperplastic parathyroid glands (p = 0.

View Article and Find Full Text PDF

Unlabelled: Uremic leontiasis ossia (ULO) is a rare manifestation of renal osteodystrophy in) patients with end-stage chronic kidney disease (CKD) and secondary hyperparathyroidism (SHPTH). It occurs due to increased osteoclastic activity secondary to high plasmatic parathyroid hormone (PTH) levels. This leads to bone deformation with thickening and massive enlargement of the cranial vault, resulting in a leonine face appearance.

View Article and Find Full Text PDF

Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disease with an estimated prevalence of 2 per 100,000. This disease is caused by a mutation in the tumor suppressor gene MEN1, which is located on chromosome 11 and codifies the menin protein. It is characterized by a predisposition of parathyroids, enteropancreatic, and anterior pituitary tumors, affecting the quality of life and lifespan of those who have the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!