This retrospective study examined the medium term outcome of 305 Titanium Nitride (TiN) Mobile bearing total knee. At ten years after the start of the study, there was a significant improvement (p < 0.0001) in the post-operative knee scores. The ten year survival with revision for any reason as the end point was 95.1% (95% CI 92.4 to 97.8). The ten year survival rate with revision for aseptic loosening as the end point was 99.1% (95% CI 97.8 to 100%). A total of 15 knees (4.9%, overall) required revision. No cases were revised due to sepsis. Based on these results, the surface Titanium Nitride ceramic, mobile-bearing total knee replacement has proved to be a reliable implant at 10 years when used in primary knee replacement.
Download full-text PDF |
Source |
---|
Materials (Basel)
January 2025
Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
The surface of titanium foil can be modified by heating in the air, in a N flow, and in an NH flow. Upon heating in the air, the elemental Ti gradually transforms to TiO at 550 °C and to rutile TiO at above 700 °C. Treatment in a N flow leads similarly to TiO at 600 °C and TiO at 700 °C, although the overall reaction is slower.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Christian Doppler Laboratory for Sustainable Hard Coatings at the Department of Materials Science, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria.
The impact of the laser wavelength on accuracy in elemental composition analysis in atom probe tomography (APT) was investigated. Three different commercial atom probe systems - LEAP 3000X HR, LEAP 5000 XR, and LEAP 6000 XR - were systematically compared for a TiN model coating studying the effect of shorter laser wavelengths, especially in the deep ultraviolet (DUV) range, on the evaporation behavior. The findings demonstrate that the use of shorter wavelengths enhances the accuracy in elemental composition, while maintaining similar electric field strengths.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Electrical and Electronic Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Silicon nanowires (Si NWs) have attracted considerable interest owing to their distinctive properties, which render them promising candidates for a wide range of advanced applications in electronics, photonics, energy storage, and sensing. However, challenges in achieving large-scale production, high uniformity, and shape control limit their practical use. This study presents a novel fabrication approach combining nanoimprint lithography, nanotransfer printing, and metal-assisted chemical etching to produce highly uniform and shape-controlled Si NW arrays.
View Article and Find Full Text PDFAdv Mater
January 2025
Oxford Quantum Circuits, Thames Valley Science Park, Shinfield, Reading, RG2 9LH, UK.
A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.
Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!