Speckle noise is an important issue in electro-holographic displays. We propose a new method for suppressing speckle noise in a computer-generated hologram (CGH) for 3D display. In our previous research, we proposed a method for CGH calculation using ray-sampling plane (RS-plane), which enables the application of advanced ray-based rendering techniques to the calculation of hologram that can reconstruct a deep 3D scene in high resolution. Conventional techniques for effective speckle suppression, which utilizes the time-multiplexing of sparse object points, can suppress the speckle noise with high resolution, but it cannot be applied to the CGH calculation using RS-plane because the CGH calculated using RS-plane does not utilize point sources on an object surface. Then, we propose the method to define the point sources from light-ray information and apply the speckle suppression technique using sparse point sources to CGH calculation using RS-plane. The validity of the proposed method was verified by numerical simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.017193 | DOI Listing |
Ultrasound Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Biomedical Engineering Programme, The University of Hong Kong, Hong Kong. Electronic address:
Objective: Near-field (NF) clutter filters are critical for unveiling true myocardial structure and dynamics. Randomized singular value decomposition (rSVD) stands out for its proven computational efficiency and robustness. This study investigates the effect of rSVD-based NF clutter filtering on myocardial motion estimation.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
In fiber-based confocal microscopy, using two separate fibers for illumination and collection enables the use of a few-mode fiber to achieve an effect similar to opening the pinhole in a conventional confocal microscope. In some Fourier-domain applications, however, or when a spectral measurement is involved, the coherent light detection would lead to noticeable spectral modulation artifacts that result from differential mode delay, an effect caused by the multimode propagation in the collection fiber. After eliminating these artifacts by using mode-dependent polarization control, we demonstrate effective spectrally encoded imaging with improved signal efficiency and lower speckle noise, and only a minor, negligible reduction in lateral and axial resolutions.
View Article and Find Full Text PDFLinear digital filters are at the core of image reconstruction and processing for many coherent optical imaging techniques, such as digital holography (DH) or optical coherence tomography (OCT). They can also be efficiently implemented using fast Fourier transform (FFT) with appropriate transfer/filter functions that operate in the frequency domain. However, even with optimal filter design, they suffer from side effects such as sidelobe generation or resolution limitations, e.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2025
The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:
Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Conventional Fourier domain Optical Coherence Tomography (FD-OCT) systems depend on resampling into a wavenumber () domain to extract the depth profile. This either necessitates additional hardware resources or amplifies the existing computational complexity. Moreover, the OCT images also suffer from speckle noise, due to systemic reliance on low-coherence interferometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!