The design of a fiber-optic dosimeter, which determines the radiation dose from the difference of radiation-induced attenuation (RIA) Δα measured in a P-doped silica fiber at λ = 413 and 470 nm, is presented along with its first test results under gamma-radiation (dose rates 0.00064 and 0.0066 Gy/s, maximal dose ~2Gy). The dose-dependence of Δα as well as of RIA at individual wavelengths is found to be well described by a power law, the exponent lying in the range 0.90-0.94. In contrast to RIA at individual wavelengths, Δα is found not to depend on dose rate and to decay only slightly on termination of irradiation. Therefore, using Δα for dosimetry is argued to be more promising.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.016778 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!