In recent years, considerable attention has been devoted to laser beams with specific intensity profile, i.e., non-Gaussian. In this work, we present a novel technique to generate high-radial-order Laguerre-Gaussian beams LG(p0) based on the use of a binary phase diffractive optical element (BPDOE). The latter is a phase plate made up of annular zones introducing alternatively a phase shift equal to 0 or π modeled on positions which do not coincide with the position of the zeros of the desired LG(p0) beam. The LG(p0) beams are obtained by transforming a fundamental Gaussian beam through an appropriate BPDOE. The design of the latter is based on the calculation of the Fresnel-Kirchhoff integral, and the diffracted intensity at the focus plane of a lens has been modeled analytically for the first time. The numerical simulations and experiment demonstrate a good beam quality transformation. Obtained LG(p0) are suitable for atom trap and pumping solid state laser applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.53.004761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!