Rubrene layers with thickness comparable to a visible light wavelength on silver thin film exhibit anomalous photoluminescence (PL) spectra that depend strongly on emission angle. The PL properties demonstrated for rubrene (500 nm)/Ag (50 nm) were modulated from yellow green to red luminescence with an increasing emission angle. The factors influencing the emission-angle-dependent PL spectra are discussed from two viewpoints: spectral modulation of rubrene PL by loss of fluorescence photon energy and additional luminescence resulting from optical interference in the rubrene layer or optical modes excited by rubrene molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.004742DOI Listing

Publication Analysis

Top Keywords

emission angle
8
rubrene
6
emission-angle-dependent photoluminescence
4
photoluminescence rubrene
4
rubrene thin
4
thin films
4
films silver
4
silver rubrene
4
rubrene layers
4
layers thickness
4

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.

View Article and Find Full Text PDF

To investigate the statistical laws of acoustic emission energy (AEE) avalanche dynamics of sandstone under varying fracture lengths and dip angles, as well as to determine the relationship between acoustic emission (AE) parameters and damage variables, we studied the mechanical properties and AE characteristics of sandstone with a single fracture subjected to uniaxial compression with the aid of the Shimadzu AG-IS test system and the PCI-2 AE system. The AEE characteristics of fractured sandstone under load were analyzed based on the statistical method of avalanche dynamics, with emphasis on AEE distribution, aftershock sequence, and waiting time distribution. The Weibull distribution function that incorporates a correction coefficient β was employed to optimize the Weibull parameters based on the strain equivalent hypothesis theory, which led to the establishment of a statistical damage constitutive model for fractured rock.

View Article and Find Full Text PDF

The utilization of wind energy can provide auxiliary thrust and hence reduce the fuel consumption as well as carbon dioxide (CO) emissions of wind-assisted ship. However, the use of sails would deviate main engine (ME) from its optimal operating point, which would reduce the engine fuel efficiency. The adoption of the shaft generator (SG) can maintain the ME running at the optimal fuel efficiency point in this condition.

View Article and Find Full Text PDF

Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!