Comparison of the volatiles formed by oxidation of phosphatidylcholine to triglyceride in model systems.

J Agric Food Chem

College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.

Published: August 2014

The oxidative stability of oleoyl and linoleoyl residues esterified in the form of triglyceride (TAG) and phosphatidylcholine (PC) during thermal treatment was investigated. Headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis was used to determine the volatile compounds from oxidized PL and TAG molecular species. The results showed that aldehydes were the major volatile oxidized compounds (VOCs) of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (SLPC), and 1,3-distearoyl-2-linoleoyl-glycerol (SLS), while ketones, especially saturated methyl ketones, were the major VOCs of 1,3-distearoyl-2-oleoyl-glycerol (SOS). The monitoring of the oxidative degradation using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) showed that either monounsaturated or diunsaturated fatty acyl groups were less oxidized when in the form of PCs than when in the form of TAGs. This finding demonstrated that the choline group in the form of PCs could increase the stability of fatty acyl groups to oxidation in comparison to TAGs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf501934wDOI Listing

Publication Analysis

Top Keywords

fatty acyl
8
acyl groups
8
form pcs
8
comparison volatiles
4
volatiles formed
4
formed oxidation
4
oxidation phosphatidylcholine
4
phosphatidylcholine triglyceride
4
triglyceride model
4
model systems
4

Similar Publications

Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.

View Article and Find Full Text PDF

Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.

View Article and Find Full Text PDF

Posttranslational modifications in cardiac metabolic remodeling mediated by metabolites: Implications for disease pathology and therapeutic potential.

Metabolism

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China. Electronic address:

The nonenergy-producing or biomass-accumulating functions of metabolism are attracting increasing attention, as metabolic changes are gaining importance as discrete signaling pathways in modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g.

View Article and Find Full Text PDF

Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.

View Article and Find Full Text PDF

ACSL4 Regulates LPS-Induced Ferroptosis in Cardiomyocytes through FASN.

Ann Clin Lab Sci

November 2024

Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China

Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.

Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!