A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. | LitMetric

Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression.

Plant Physiol Biochem

Department of BioAgricultural Sciences, National Chiayi University, Chiayi, Taiwan. Electronic address:

Published: October 2014

Silver nanoparticles (AgNPs) are widely used as antibacterial nanomaterials; however, the environmental impacts of AgNPs remain uncertain. In this study, Arabidopsis physiological responses and gene expression were investigated after exposure to 3 different morphologies of AgNPs. The triangular (47 ± 7 nm) and spherical (8 ± 2 nm) AgNPs exhibited the lowest and highest degrees of antimicrobial activity, respectively. The AgNP-induced phenotypic alterations in Arabidopsis were correlated with nanoparticle morphology and size, in which the decahedral AgNPs (45 ± 5 nm) induced the highest degree of root growth promotion (RGP); however, the spherical AgNPs exhibited no RGP and induced the highest levels of anthocyanin accumulation in Arabidopsis seedlings. The decahedral and spherical AgNPs induced the lowest and highest levels of Cu/Zn superoxide dismutase (CSD2) accumulation, respectively. Moreover, 3 morphologies of AgNPs induced protein accumulations including cell-division-cycle kinase 2 (CDC2), protochlorophyllide oxidoreductase (POR), and fructose-1,6 bisphosphate aldolase (FBA). Regarding transcription, the AgNPs induced the gene expression of indoleacetic acid protein 8 (IAA8), 9-cis-epoxycarotenoid dioxygenase (NCED3), and dehydration-responsive RD22. Additional studies have shown that AgNPs antagonized the aminocyclopropane-1-carboxylic acid (ACC)-derived inhibition of root elongation in Arabidopsis seedlings, as well as reduced the expression of ACC synthase 7 (ACS7) and ACC oxidase 2 (ACO2), suggesting that AgNPs acted as inhibitors of ethylene (ET) perception and could interfere with ET biosynthesis. In conclusion, AgNPs induce ROS accumulation and root growth promotion in Arabidopsis. AgNPs activate Arabidopsis gene expression involved in cellular events, including cell proliferation, metabolism, and hormone signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2014.07.010DOI Listing

Publication Analysis

Top Keywords

gene expression
16
agnps
13
agnps induced
12
silver nanoparticles
8
morphologies agnps
8
agnps exhibited
8
lowest highest
8
induced highest
8
root growth
8
growth promotion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!