We report a high power, single frequency, linearly polarized master oscillator power amplifier emitting 110 ns, 1 kW peak power pulses at 2050 nm. A 20% slope efficiency and a beam quality of M2=1.21 are achieved with three-stage double-clad Tm(3+)-doped fiber architecture. Various pump schemes are compared leading to the conclusion that 793 nm pump wavelength is the most efficient for amplification at 2050 nm. Based on numerical simulations, the Brillouin gain coefficient around 2 μm in Tm(3+) highly doped silica fiber is estimated to 1.2×10(-11) m/W. Output peak power is limited by stimulated Brillouin scattering to 535 W without mitigation and to 1 kW with application of a strain distribution along the doped fiber.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.53.004413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!