A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inverse analysis of the rainbow for the case of low-coherent incident light to determine the diameter of a glass fiber. | LitMetric

The aim of this paper is to discuss the possibility of a noninvasive, optical characterization of a transparent (glass) fiber on the basis of scattered light in the vicinity of a primary rainbow. Computational studies show that with the use of a spectrally adjusted incident beam of light, it is possible to form a rainbow with no strong nonlinearities typical for coherent light and that may be interpreted in terms of Airy's theory of rainbow. An inverse analysis is applied to obtain the fiber diameter with the help of a straightforward mathematical formula based on the Airy integral, corrected by comparison with the solution according to the complex angular momentum method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.004239DOI Listing

Publication Analysis

Top Keywords

inverse analysis
8
glass fiber
8
rainbow
4
analysis rainbow
4
rainbow case
4
case low-coherent
4
low-coherent incident
4
light
4
incident light
4
light determine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!