Synthesis of toroidal gold nanoparticles assisted by soft templates.

Langmuir

Department of Chemistry and Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.

Published: August 2014

A three-component system comprising surfactant molecules and molecularly cross-linked metal centers assembles into nanoring structures. The thickness of the nanorings is determined by the dimensions of the surfactant bilayer while the dimensions of the ring opening depend on and can be regulated by the concentrations of the participating species. Once formed, these organic-inorganic hybrids can be transformed, by air plasma treatment, into all-metal nanorings exhibiting strong adsorption in the near IR.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la5020913DOI Listing

Publication Analysis

Top Keywords

synthesis toroidal
4
toroidal gold
4
gold nanoparticles
4
nanoparticles assisted
4
assisted soft
4
soft templates
4
templates three-component
4
three-component system
4
system comprising
4
comprising surfactant
4

Similar Publications

TDP-43 is linked to human diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Expression of TDP-43 in yeast is known to be toxic, cause cells to elongate, form liquid-like aggregates, and inhibit autophagy and TOROID formation. Here, we used the yeast model of disorders of inborn errors of metabolism, previously shown to lead to intracellular adenine accumulation and adenine amyloid-like fiber formation, to explore interactions with TDP-43.

View Article and Find Full Text PDF

Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear.

View Article and Find Full Text PDF

As the exploration and development of deep wells have emerged as a key option to extract more oil and gas resources trapped underneath, high-temperature formations impose stringent requirements on the thermal stability of plugging agents used in water-based drilling fluids. In this work, β-cyclodextrin, with its unique conical toroidal rigid stable structure and internal hydrophobic and external hydrophilic special adsorption capacity, was first grafted with maleic anhydride to prepare a silicone polymer and then copolymerized with dimethyldiallylammonium chloride (DMDAAC) in the presence of coupling agent vinyltriethoxysilane (A151) and cross-linking divinylbenzene (DVD) to finally obtain a high-temperature resistant plugging agent (AMMD). Subsequently, the molecular structure was evidenced and the performance of AMMD was examined in the polysulfonate-base fluid via a series of tests including high-temperature high-pressure filtration loss, sand tray plugging, and drilling fluid displacement, and the results were compared with the counterpart Soltex under the same conditions.

View Article and Find Full Text PDF

Effect of peptide hydrophilicity on membrane curvature and permeation.

J Chem Phys

October 2024

Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, Karnataka, India.

Using a well-developed reaction coordinate in umbrella sampling, we studied the single peptide permeation through a model cancerous cell membrane, varying the hydrophilicity and the charge of the peptides. Two peptides, melittin and pHD108, were studied. The permeation mechanism differs from a barrel-stave-like mechanism to toroidal pore and vesicle formation based on the number and the placement of the hydrophilic amino acids in the peptide.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!