Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effects of optical feedback on period-one nonlinear dynamics of an optically injected semiconductor laser are numerically investigated. The optical feedback can suppress the period-one dynamics and excite other more complex dynamics if the feedback level is high except for extremely short feedback delay times. Within the range of the period-one dynamics, however, the optical feedback can stabilize the period-one dynamics in such a manner that significant reduction of microwave linewidth and phase noise is achieved, up to more than two orders of magnitude. A high feedback level and/or a long feedback delay time are generally preferred for such microwave stabilization. However, considerably enhanced microwave linewidth and phase noise happen periodically at certain feedback delay times, which is strongly related to the behavior of locking between the period-one microwave oscillation and the feedback loop modes. The extent of these enhancements reduces if the feedback level is high. While the microwave frequency only slightly changes with the feedback level, it red-shifts with the feedback delay time before an abrupt blue-shift occurs periodically. With the presence of the laser intrinsic noise, frequency jitters occur around the feedback delay times leading to the abrupt blue-shifts, ranging from the order of 0.1 GHz to the order of 1 GHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.018648 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!