When a trichromatic laser field is applied to a cavity optomechanical system within the single-photon strong-coupling regime, we find that the motion of mirror can evolve into a dark state such that the cavity field mode cannot absorb energy from the external field. Via tuning three components of the pumping field to be resonant to the carrier, red-sideband and blue-sideband transitions in the displaced representation respectively, the state of mirror motion can exhibit non-classical properties, such as that in the Lamb-Dicke limit, the state evolves into a squeezed coherent state, and beyond the limit, the state can become a squeezed non-Gaussian state.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.018254DOI Listing

Publication Analysis

Top Keywords

mirror motion
8
single-photon strong-coupling
8
strong-coupling regime
8
limit state
8
state
6
generation non-classical
4
non-classical states
4
states mirror
4
motion single-photon
4
regime trichromatic
4

Similar Publications

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).

View Article and Find Full Text PDF

Predicting largest expected aftershock ground motions using automated machine learning (AutoML)-based scheme.

Sci Rep

January 2025

College of Civil and Transportation Engineering, Hohai University, No. 1 Xikang Road, Nanjing City, 210098, Jiangsu Province, People's Republic of China.

Aftershocks can cause additional damage or even lead to the collapse of structures already weakened by a mainshock. Scarcity of in-situ recorded aftershock accelerograms heightens the need to develop synthetic aftershock ground motions. These synthesized motions are crucial for assessing the cumulative seismic demand on structures subjected to mainshock-aftershock sequences.

View Article and Find Full Text PDF

Effectiveness of movement representation techniques in non-specific shoulder pain: a systematic review and meta-analysis.

Sci Rep

January 2025

Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, University of Acibadem Mehmet Ali Aydınlar, Kerem Aydinlar Kampusu, Icerenkoy Mah. Kayisdagi Cad. No: 32, Atasehir, 34752, Istanbul, Turkey.

This systematic review and meta-analysis aims to assess the effects of movement representation techniques (MRT) on pain, range of motion, functional outcomes, and pain-related fear in patients with non-specific shoulder pain (NSSP). A literature search conducted in PubMed, PEDro, EBSCO, Scopus, Cochrane Library, ScienceDirect, and gray literature on April 31, 2023. We selected seven randomized controlled trials based on the PICOS framework.

View Article and Find Full Text PDF

The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!