Computational analyses of curcuminoid analogs against kinase domain of HER2.

BMC Bioinformatics

Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd, Chatuchak, Bangkok 10900, Thailand.

Published: August 2014

Background: Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2 inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups classified by their core structure, β-diketone, monoketone, pyrazole, and isoxazole.

Results: In the present study, both computational and experimental studies were performed. The specificity of curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl, carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021 ),were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors, considering them as a promising drug in the near future.

Conclusions: The series of curcumin compounds were screened using a computational molecular docking and followed by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This information would explore more understanding of curcuminoid structures and HER2-TK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143557PMC
http://dx.doi.org/10.1186/1471-2105-15-261DOI Listing

Publication Analysis

Top Keywords

curcumin analogs
16
breast cancer
12
cancer cell
12
cell lines
12
human breast
8
curcumin compounds
8
molecular dynamics
8
dynamics simulation
8
her2-tk inhibitors
8
curcumin
7

Similar Publications

Background: Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths. Curcumin has been reported to have suppressive effects in CRC and to address the physiological limitations of curcumin, a chemically synthesized curcuminoid analog, known as (2E,6E)-2,6-Bis (2,3-Dimethoxy benzylidine) cyclohexanone (DMCH), was developed and the anti-metastatic and anti-angiogenic properties of DMCH in colorectal cell line, SW620 were examined.

Methods: The anti-metastatic effects of DMCH were examined in the SW620 cell line by scratch assay, migration, and invasion assay, while for anti-angiogenesis properties of the cells, the mouse aortic ring assay and Human Umbilical Vein Endothelial Cells (HUVEC) assay were conducted.

View Article and Find Full Text PDF

Preparation, characterization and antibacterial investigation of water-soluble curcumin-chitooligosaccharide complexes.

Carbohydr Polym

March 2025

Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey. Electronic address:

Curcumin has a wide range of application prospects, with various bioactivities in the food industry and in the biomedical field. However, curcumin has poor water solubility and is sensitive to pH, light and temperature. In this study, curcumin-chitooligosaccharide (CUR-COS) complexes were prepared via mechanochemical methods, and the CUR-COS complex was more soluble after freeze-drying (up to 862-fold greater than that of curcumin).

View Article and Find Full Text PDF

Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis.

Neurotox Res

January 2025

Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.

Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand.

View Article and Find Full Text PDF

A Study on the Photoisomerization of ()-Dehydrozingerone, Its ()-()-C₂ Symmetric Dimer, and Their -Methylated Derivatives.

Molecules

December 2024

Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, I-07100 Sassari, Italy.

In this study, UV-induced ()-to-() geometrical isomerizations of the curcumin degradation product ()-dehydrozingerone, along with curcumin-inspired ()--methylated dehydrozingerone and their corresponding C-symmetric dimers, were investigated. All compounds produced corresponding () isomers in varying yields upon UV irradiation in deuterated solvents. The efficiency of these photoisomerizations depended on the solvent and wavelength used.

View Article and Find Full Text PDF

Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!