The SIENA/FSL whole brain atrophy algorithm is no more reproducible at 3T than 1.5 T for Alzheimer's disease.

Psychiatry Res

Department of Physics and Medical Technology, VU University medical center, Amsterdam, The Netherlands; Department of Radiology, VU University medical center, Amsterdam, The Netherlands; MS Center Amsterdam and Alzheimer Center, VU University medical center, Amsterdam, The Netherlands.

Published: October 2014

The back-to-back (BTB) acquisition of MP-RAGE MRI scans of the Alzheimer׳s Disease Neuroimaging Initiative (ADNI1) provides an excellent data set with which to check the reproducibility of brain atrophy measures. As part of ADNI1, 131 subjects received BTB MP-RAGEs at multiple time points and two field strengths of 3T and 1.5 T. As a result, high quality data from 200 subject-visit-pairs was available to compare the reproducibility of brain atrophies measured with FSL/SIENA over 12 to 18 month intervals at both 3T and 1.5 T. Although several publications have reported on the differing performance of brain atrophy measures at 3T and 1.5 T, no formal comparison of reproducibility has been published to date. Another goal was to check whether tuning SIENA options, including -B, -S, -R and the fractional intensity threshold (f) had a significant impact on the reproducibility. The BTB reproducibility for SIENA was quantified by the 50th percentile of the absolute value of the difference in the percentage brain volume change (PBVC) for the BTB MP-RAGES. At both 3T and 1.5 T the SIENA option combination of "-B f=0.2", which is different from the default values of f=0.5, yielded the best reproducibility as measured by the 50th percentile yielding 0.28 (0.23-0.39)% and 0.26 (0.20-0.32)%. These results demonstrated that in general 3T had no advantage over 1.5 T for the whole brain atrophy measure - at least for SIENA. While 3T MRI is superior to 1.5 T for many types of measurements, and thus worth the additional cost, brain atrophy measurement does not seem to be one of them.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2014.07.002DOI Listing

Publication Analysis

Top Keywords

brain atrophy
20
reproducibility brain
8
atrophy measures
8
btb mp-rages
8
50th percentile
8
reproducibility
6
brain
6
atrophy
5
siena/fsl brain
4
atrophy algorithm
4

Similar Publications

A comprehensive genome-wide association study (GWAS) has validated the identification of the Plexin-A 4 (PLXNA4) gene as a novel susceptibility factor for Alzheimer's disease (AD). Nonetheless, the precise role of PLXNA4 gene polymorphisms in the pathophysiology of AD remains to be established. Consequently, this study is aimed at exploring the relationship between PLXNA4 gene polymorphisms and neuroimaging phenotypes intimately linked to AD.

View Article and Find Full Text PDF

Background And Objectives: Brain energy deficiency occurs at the early stage of Huntington disease (HD). Triheptanoin, a drug that targets the Krebs cycle, can restore a normal brain energetic profile in patients with HD. In this study, we aimed at assessing its efficacy on clinical and neuroimaging structural measures in HD.

View Article and Find Full Text PDF

Background And Purpose: Endovascular thrombectomy (EVT) is the standard for acute ischemic stroke from large vessel occlusion, but post-EVT functional independence varies. Brain atrophy, linked to higher cerebrospinal fluid volume (CSFV), may affect outcomes. Baseline CSFV could predict EVT benefit by assessing brain health.

View Article and Find Full Text PDF

Impaired semantic control in the logopenic variant of primary progressive aphasia.

Brain Commun

December 2024

Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK.

We investigated semantic cognition in the logopenic variant of primary progressive aphasia, including (i) the status of verbal and non-verbal semantic performance; and (ii) whether the semantic deficit reflects impaired semantic control. Our hypothesis that individuals with logopenic variant of primary progressive aphasia would exhibit semantic control impairments was motivated by the anatomical overlap between the temporoparietal atrophy typically associated with logopenic variant of primary progressive aphasia and lesions associated with post-stroke semantic aphasia and Wernicke's aphasia, which cause heteromodal semantic control impairments. We addressed the presence, type (semantic representation and semantic control; verbal and non-verbal), and progression of semantic deficits in logopenic variant of primary progressive aphasia.

View Article and Find Full Text PDF

Background: Single-subject voxel-based morphometry (VBM) is a powerful technique for reader-independent detection of brain atrophy in structural magnetic resonance imaging (MRI) to support the (differential) diagnosis and staging of neurodegenerative diseases in individual patients. However, VBM is sensitive to the MRI scanner platform and details of the acquisition sequence. To mitigate this limitation, we recently proposed and validated a convolutional neural network (CNN)-based VBM which does not rely on a normative reference database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!