Cu2 O thin film and a transparent bilayer have been fabricated by electrodeposition method. The growths were obtained in potentiostatic mode with gradual degradation of anodic current. X-ray diffraction (XRD) study showed that the bilayer is polycrystalline and it possesses mixture of different crystallite phases of copper oxides. Surface morphology of the films was investigated by scanning electron microscopy (SEM). The SEM images revealed that the films were uniformly distributed and the starting material (Cu2 O) had cubical structure. Grains agglomeration and crystallinity were enhanced by annealing. Optical studies indicated that all the samples have direct allowed transition. Energy band gap of the bilayer film was reduced by annealing treatment thus corroborating quantum confinement upshot.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.12158DOI Listing

Publication Analysis

Top Keywords

synthesis microstructural
4
microstructural studies
4
studies annealed
4
annealed cu2o/cuxs
4
bilayer
4
cu2o/cuxs bilayer
4
bilayer transparent
4
transparent electrode
4
electrode material
4
material photovoltaic
4

Similar Publications

Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.

View Article and Find Full Text PDF

Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials.

View Article and Find Full Text PDF

The effect of SiC and YO inclusion on microstructure and mechanical properties of Al 5052 composite fabricated through Friction Stir Process.

Heliyon

January 2025

AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.

A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.

View Article and Find Full Text PDF

To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).

View Article and Find Full Text PDF

The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!