Increasing angulation decreases measured aortic stent graft pullout forces.

J Vasc Surg

Division of Vascular Surgery, Toronto General Hospital, PMCC, UHN, Toronto, Ontario, Canada. Electronic address:

Published: February 2016

Objective: Experimentally measured pullout forces for stent grafts (SGs) are used in clinical discussions and as reference values in bench studies and computer simulations. Previous values of these forces are available from studies in which the SG was pulled out in the straight caudal direction. However, clinical and numerical studies have suggested that displacement forces acting on SGs are directed more anteriorly. The objective of this study was to measure pullout forces as a function of angulation and to test the hypothesis that pullout forces decrease with increasing angulation.

Methods: Six different SGs (Bolton Treovance, Cook Zenith Flex, Cook Zenith LP, Medtronic Endurant, Medtronic Talent, and Vascutek Anaconda) were deployed in fresh bovine aortas, then pulled out by an electronic motor at 1 mm/s, while tension force was measured continuously with a digital load cell. The SG off-axis angulation was changed from 0 to 90 degrees in increments of 10 degrees. The test system was submerged in a custom-built temperature-controlled saline bath at 37°C. At least three tests were performed for each device at each angle (with the exception of the Cook Zenith Flex, which experienced plastic deformation of its barbs after a single test per device). Each aortic specimen was used only once and then discarded. Hand-sutured graft anastomoses were also tested at 0 degrees to provide a reference value.

Results: A total of 374 pullout tests were performed for the SGs and anastomoses. Sixty-four tests were excluded because of failure of the aorta or apparatus before device pullout. The remaining 310 tests showed pullout forces that demonstrated a decrease in the average pullout force for all six devices from 0 to 90 degrees (Bolton Treovance from 39.3 N to 23.9 N; Cook Zenith Flex from 59.8 N to 48.9 N; Cook Zenith LP from 50.3 N to 41.8 N; Medtronic Endurant from 29.9 N to 25.8 N; Medtronic Talent from 6.0 N to 5.5 N; and Vascutek Anaconda from 37.0 N to 30.3 N). For reference, the mean pullout force for the hand-sutured anastomoses was 63 N.

Conclusions: This study reports for the first time the change in pullout force with angulation, showing a general pullout force decrease with increasing angle. With a larger number of samples than in previous studies, our results provide updated benchmark data that can be used for clinical discussions, computational and experimental studies, and future device design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2014.06.115DOI Listing

Publication Analysis

Top Keywords

pullout forces
20
cook zenith
20
pullout force
16
zenith flex
12
pullout
11
clinical discussions
8
decrease increasing
8
bolton treovance
8
medtronic endurant
8
medtronic talent
8

Similar Publications

Objective: Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs.

View Article and Find Full Text PDF

Atomistic Simulations of Mechanical Properties of Lignin.

Polymers (Basel)

December 2024

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.

The mechanical properties of lignin, an aromatic heteropolymer constituting 20-30% plant biomass, are important to the fabrication and processing of lignin-based sustainable polymeric materials. In this study, atomistic simulations are performed to provide microscopic insights into the mechanics of lignin. Representative samples of miscanthus, spruce, and birch lignin are studied.

View Article and Find Full Text PDF

Medial meniscus root tears (MMRTs) are serious injuries that disrupt knee biomechanics, often accelerating cartilage degeneration and osteoarthritis when left untreated. These injuries are increasingly recognized as a major cause of knee pain and functional limitations, particularly among middle-aged and older adults. This systematic review and meta-analysis aimed to evaluate the outcomes of conservative management compared to surgical intervention for MMRT, focusing on pain relief, functional recovery, and the progression of osteoarthritis.

View Article and Find Full Text PDF

Background: The fracture of an endodontic instrument within the root canal system can occur during root canal therapy, complicating thorough cleaning and shaping. Consequently, managing the broken fragment becomes crucial.

Methods: Eighty Nickel-titanium (NiTi) #20 K-files (Mani, Tochigi, Japan) were cut 8 mm from the tip, fixed into a corkboard, and classified into five groups (n = 14 each).

View Article and Find Full Text PDF

The new type of support disc-type anchor is an expanded body anchor with broad application prospects, and its load-bearing performance is significantly better than that of traditional anchors. However, there is a problem of premature shear damage in traditional support disc-type anchors. In order to solve this problem, this paper improves the traditional support disk anchor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!