The idiopathic generalized epilepsy (IGE) is a neurological disorder which accounts for approximately 30% of all epilepsy cases. Patients identified with IGE syndromes have pharmacoresponsive epilepsies without abnormal neurological symptoms, structural brain lesions and are of unknown origin. A genetic etiology to IGEs has been proposed. Gamma amino butyric acid (GABA), a major inhibitory neurotransmitter acts by binding to transmembrane GABAA and GABAB receptors of both pre- and postsynaptic neurons. Synapsin II (SynII), a neuron specific phosphoprotein plays a major role in synaptogenesis and neurotransmitter release. The present study was carried out with an aim to evaluate the association of GABRA6 (rs3219151) T>C and Syn II (rs37733634) A>G gene polymorphisms with IGE. Molecular analysis revealed that the frequency of 'CC' genotype and 'C'allele of GABRA6 (rs3219151) T>C gene polymorphism was significantly higher in IGE patients compared to healthy controls [CC vs. TT, χ2=26; p<0.001; Odds ratio=3.6 (95% CI; 2.1-5.9); C vs T, χ2=24.7; p<0.001; Odds ratio=1.78 (95% CI; 1.4-2.2)]. The frequency of 'GG' genotype and 'G' allele of the intronic polymorphism A>G in Syn II gene was also found to be significantly associated with the disease when compared to controls [GG vs AA, χ2=64.52; p<0.001; Odds ratio=7.37 (95% CI; 4.4-12.3); G vs. A, χ2=65.78; p<0.001; Odds ratio=2.57 (95% CI; 2.0-3.2)]. The generalized multifactor dimensionality reduction method was employed to detect gene-gene interactions. The gene-gene interaction at two loci involving GABRA6 and Syn II revealed a significant association [χ2=36.6, p<0.001, Odds ratio=3.17 (95% CI; 2.2-4.6)] with IGE. Therefore, the present study clearly indicates that both GABRA6 (rs3219151) T>C and Syn II (rs37733634) A>G polymorphisms are important risk factors for the development of IGE in the South Indian population from Andhra Pradesh. The gene-gene interaction studies demonstrated significant interactive effects of these two loci in the development of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2014.07.001 | DOI Listing |
Genes (Basel)
April 2024
National Institute for Plant Biotechnology, ICAR, New Delhi 110012, India.
MicroRNAs (miRNAs) are small non-coding conserved molecules with lengths varying between 18-25nt. Plants miRNAs are very stable, and probably they might have been transferred across kingdoms via food intake. Such miRNAs are also called exogenous miRNAs, which regulate the gene expression in host organisms.
View Article and Find Full Text PDFEarly Hum Dev
November 2023
Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
Background: Stress exposure during Neonatal Intensive Care Unit (NICU) stay may have long-lasting effects on neurodevelopmental outcomes in extremely preterm infants. Altered DNA methylation of stress-related and neurodevelopmentally relevant genes may be an underlying mechanism.
Aims: This exploratory study aimed to investigate the association between neonatal stress exposure and DNA methylation in these genes at two different time points: early during the NICU stay (7-14 days after birth) and later, at discharge from the NICU.
Eur J Neurosci
September 2023
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
Cannabis use leads to symptom exacerbation in schizophrenia patients, and endocannabinoid ligands have been studied as tentative schizophrenia therapeutics. Here, we aimed to characterise the connection between schizophrenia and the cannabinoid receptor 1 gene (CNR1) and explore possible mechanisms affecting its expression in schizophrenia. We performed a participant data systematic meta-analysis of CNR1 gene expression and additional endocannabinoid system genes in both brain (subcortical areas) and blood samples.
View Article and Find Full Text PDFFront Cell Neurosci
July 2023
Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation.
View Article and Find Full Text PDFHum Mol Genet
September 2023
Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
Human disease-associated genetic variations often map to long non-coding RNA (lncRNA) genes; however, elucidation of their functional impact is challenging. We previously identified a new genetic variant rs4454083 (A/G) residing in exon of an uncharacterized lncRNA ARBAG that strongly associates with plasma levels of C-peptide, a hormone that regulates insulin bioavailability. On the opposite strand, rs4454083 also corresponds to an intron of a cerebellum-specific GABA receptor subunit gene GABRA6 that mediates strengthening of inhibitory synapses by insulin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!