Background & Aims: Lynch syndrome, a nonpolyposis form of hereditary colorectal cancer, is caused by inherited defects in DNA mismatch repair (MMR) genes. Most patients carry a germline mutation in 1 allele of the MMR genes MSH2 or MLH1. With spontaneous loss of the wild-type allele, cells with defects in MMR exist among MMR-proficient cells, as observed in healthy intestinal tissues from patients with Lynch syndrome. We aimed to create a mouse model of this situation to aid in identification of environmental factors that affect MMR-defective cells and their propensity for oncogenic transformation.
Methods: We created mice in which the MMR gene Msh2 can be inactivated in a defined fraction of crypt base columnar stem cells to generate MSH2-deficient intestinal crypts among an excess of wild-type crypts (Lgr5-CreERT2;Msh2(flox/-) mice). Intestinal tissues were collected; immunohistochemical analyses were performed for MSH2, along with allele-specific PCR assays. We traced the fate of MSH2-deficient crypts under the influence of different external factors.
Results: Lgr5-CreERT2;Msh2(flox/-) mice developed more adenomas and adenocarcinomas than control mice; all tumors were MSH2 deficient. Exposure of Lgr5-CreERT2;Msh2(flox/-) mice to the methylating agent temozolomide caused MSH2-deficient intestinal stem cells to proliferate more rapidly than wild-type stem cells. The MSH2-deficient intestinal stem cells were able to colonize the intestinal epithelium and many underwent oncogenic transformation, forming intestinal neoplasias.
Conclusions: We developed a mouse model of Lynch syndrome (Lgr5-CreERT2;Msh2(flox/-) mice) and found that environmental factors can modify the number and mutability of the MMR-deficient stem cells. These findings provide evidence that environmental factors can promote development of neoplasias and tumors in patients with Lynch syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2014.07.052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!