Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6.

J Neuroinflammation

The National Key Clinic Specialty, the Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253# Gongye Road, Guangzhou 510282, China.

Published: August 2014

Microglia are the primary immunocompetent cells in brain tissue and microglia-mediated inflammation is associated with the pathogenesis of various neuronal disorders. Recently, many studies have shown that mesenchymal stem cells (MSCs) display a remarkable ability to modulate inflammatory and immune responses through the release of a variety of bioactive molecules, thereby protecting the central nervous system. Previously, we reported that MSCs have the ability to modulate inflammatory responses in a traumatic brain injury model and that the potential mechanisms may be partially attributed to upregulated TNF-α stimulated gene/protein 6 (TSG-6) expression. However, whether TSG-6 exerts an anti-inflammatory effect by affecting microglia is not fully understood. In this study, we investigated the anti-inflammatory effects of MSCs and TSG-6 in an in vitro lipopolysaccharide (LPS)-induced BV2 microglial activation model. We found that MSCs and TSG-6 significantly inhibited the expression of pro-inflammatory mediators in activated microglia. However, MSC effects on microglia were attenuated when TSG-6 expression was silenced. In addition, we found that the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways in LPS-stimulated BV2 microglial cells was significantly inhibited by TSG-6. Furthermore, we found that the presence of CD44 in BV2 microglial cells was essential for MSC- and TSG-6-mediated inhibition of pro-inflammatory gene expression and of NF-κB and MAPK activation in BV2 microglial cells. The results of this study suggest that MSCs can modulate microglia activation through TSG-6 and that TSG-6 attenuates the inflammatory cascade in activated microglia. Our study indicates that novel mechanisms are responsible for the immunomodulatory effect of MSCs on microglia and that MSCs, as well as TSG-6, might be promising therapeutic agents for the treatment of neurotraumatic injuries or neuroinflammatory diseases associated with microglial activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128538PMC
http://dx.doi.org/10.1186/1742-2094-11-135DOI Listing

Publication Analysis

Top Keywords

bv2 microglial
20
microglial cells
16
tsg-6
10
mesenchymal stem
8
stem cells
8
inflammatory responses
8
ability modulate
8
modulate inflammatory
8
tsg-6 expression
8
mscs tsg-6
8

Similar Publications

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Inhibition of Bruton's tyrosine kinase restricts neuroinflammation following intracerebral hemorrhage.

Theranostics

January 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.

Intracerebral hemorrhage (ICH) is a devastating form of stroke with a lack of effective treatments. Following disease onset, ICH activates microglia and recruits peripheral leukocytes into the perihematomal region to amplify neural injury. Bruton's tyrosine kinase (BTK) controls the proliferation and survival of various myeloid cells and lymphocytes.

View Article and Find Full Text PDF

Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Chemotherapy-induced neuropathic pain (CINP) is a prevalent side effect of chemotherapy. Total glucosides of paeony (TGP) have been shown to be effective in pain management. This study aimed to investigate the efficacy and mechanism of TGP in alleviating CINP.

View Article and Find Full Text PDF

Depression is a prevalent mental illness that significantly impairs individuals' overall quality of life and physical well-being. However, the pathological mechanisms of depression remain unclear, and effective treatment strategies are urgently needed. Pentraxin 3 (PTX3), a long pentraxin protein, plays a significant role in various pathological conditions, including infections, immune responses, and tissue repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!