Ursolic acid ameliorates autoimmune arthritis via suppression of Th17 and B cell differentiation.

Acta Pharmacol Sin

1] The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea [2] Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137-040, South Korea.

Published: September 2014

Aim: Ursolic acid (UA) is a pentacyclic triterpenoid found in most plant species, which has been shown anti-inflammatory and anti-oxidative activities. In this study, we examined the effects of UA on collagen-induced arthritis (CIA) in mice, and to identify the mechanisms underlying the effects.

Methods: CIA was induced in mice. Two weeks later, the mice were treated with UA (150 mg/kg, ip, 3 times per week) for 4 weeks. The expression of cytokines and oxidative stress markers in joint tissues was measured with immunohistochemistry. The numbers of CD4+IL-17+, CD4+CD25+Foxp3+ and pSTAT3 cells in spleens were determined using confocal immunostaining or flowcytometric analyses. Serum antibody levels and B cell-associated marker mRNAs were analyzed with ELISAs and qRT-PCR, respectively. CD4+ T cells and CD19+ B cells were purified from mice spleens for in vitro studies.

Results: UA treatment significantly reduced the incidence and severity of CIA-induced arthritis, accompanied by decreased expression of proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-21 and IL-17) and oxidative stress markers (nitrotyrosine and iNOS) in arthritic joints. In CIA mice, UA treatment significantly decreased the number of Th17 cells, while increased the number of Treg cells in the spleens, which was consistent with decreased expression of pSTAT3, along with IL-17 and RORγt in the splenocytes. In addition, UA treatment significantly reduced the serum CII-specific IgG levels in CIA mice. The inhibitory effects of UA on Th17 cells were confirmed in an in vitro model of Th17 differentiation. Furthermore, UA dose-dependently suppressed the expression of B cell-associated markers Bcl-6, Blimp1 and AID mRNAs in purified CD19+ B cells pretreated with IL-21 or LPS in vitro.

Conclusion: UA treatment significantly ameliorates CIA in mice via suppression of Th17 and differentiation. By targeting pathogenic Th17 cells and autoantibody production, UA may be useful for the treatment of autoimmune arthritis and other Th17-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155530PMC
http://dx.doi.org/10.1038/aps.2014.58DOI Listing

Publication Analysis

Top Keywords

cia mice
16
th17 cells
12
ursolic acid
8
autoimmune arthritis
8
suppression th17
8
oxidative stress
8
stress markers
8
cells
8
cells spleens
8
cd19+ cells
8

Similar Publications

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.

View Article and Find Full Text PDF

Objective: We aimed to evaluate microbiome and microbiota-derived C18 dietary polyunsaturated fatty acids (PUFAs), such as conjugated linoleic acid (CLA), and to investigate their differences that correlate with arthritis severity in collagen-induced arthritis (CIA) mice.

Methods: On day 84 after induction, during the chronic phase of arthritis, cecal samples were analyzed using 16S rRNA sequencing, and plasma and cecal digesta were evaluated using liquid chromatography-tandem mass spectrometry. Differences in microbial composition between 10 control (Ctrl) and 29 CIA mice or between the mild and severe subgroups based on arthritis scores were identified.

View Article and Find Full Text PDF

Human paraoxonase 1 (PON1), an enzyme bound to high-density lipoprotein (HDL), hydrolyzes oxidized lipids and contributes to HDL atheroprotective functions. Decreased serum paraoxonase and arylesterase activities of PON1 have been reported in patients at increased atherosclerosis risk, such as rheumatoid arthritis patients, and associated with arthritis severity and cardiovascular risk. Agents that can modulate PON1 activity and HDL-mediated effects have not been discovered.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a systemic disease that primarily manifests as chronic synovitis of the symmetric small joints. Despite the availability of various targeted drugs for RA, these treatments are limited by adverse reactions, warranting new treatment approaches. Suberosin (SBR), isolated from Plumbago zeylanica-a medicinal plant traditionally used to treat RA in Asia-possesses notable biological activities.

View Article and Find Full Text PDF

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!